These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23419271)

  • 1. Improvement of pulmonary function by oral treatment with a VLA-4 antagonist in a mouse asthmatic model.
    Takayama G; Matsumoto K; Taira T; Aonuma M; Yokoyama M; Iigo Y; Takashi T
    J Pharmacol Sci; 2013; 121(2):172-5. PubMed ID: 23419271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of trans-4-[1-[[7-fluoro-2-(1-methyl-3-indolyl)-6-benzoxazolyl]acetyl]-(4S)-fluoro-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid as a potent, orally active VLA-4 antagonist.
    Setoguchi M; Iimura S; Sugimoto Y; Yoneda Y; Chiba J; Watanabe T; Muro F; Iigo Y; Takayama G; Yokoyama M; Taira T; Aonuma M; Takashi T; Nakayama A; Machinaga N
    Bioorg Med Chem; 2012 Feb; 20(3):1201-12. PubMed ID: 22261021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel, potent, and orally active VLA-4 antagonist with good aqueous solubility: trans-4-[1-[[2-(5-Fluoro-2-methylphenylamino)-7-fluoro-6-benzoxazolyl]acetyl]-(5S)-[methoxy(methyl)amino]methyl-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid.
    Setoguchi M; Iimura S; Sugimoto Y; Yoneda Y; Chiba J; Watanabe T; Muro F; Iigo Y; Takayama G; Yokoyama M; Taira T; Aonuma M; Takashi T; Nakayama A; Machinaga N
    Bioorg Med Chem; 2013 Jan; 21(1):42-61. PubMed ID: 23218775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of trans-4-[1-[[2,5-Dichloro-4-(1-methyl-3-indolylcarboxamido)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid: an orally active, selective very late antigen-4 antagonist.
    Muro F; Iimura S; Sugimoto Y; Yoneda Y; Chiba J; Watanabe T; Setoguchi M; Iigou Y; Matsumoto K; Satoh A; Takayama G; Taira T; Yokoyama M; Takashi T; Nakayama A; Machinaga N
    J Med Chem; 2009 Dec; 52(24):7974-92. PubMed ID: 19891440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel synthetic approach to very late antigen-4 antagonist trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxyamide)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid via tert-butyl trans-[(4S)-Methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylate as a key intermediate.
    Chiba J; Machinaga N
    Chem Pharm Bull (Tokyo); 2011; 59(5):574-8. PubMed ID: 21532195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concise synthesis of a very late antigen-4 antagonist trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxyamide)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid via reductive etherification.
    Chiba J; Muro F; Setoguchi M; Machinaga N
    Chem Pharm Bull (Tokyo); 2012; 60(7):882-6. PubMed ID: 22790822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma.
    Bao ZS; Hong L; Guan Y; Dong XW; Zheng HS; Tan GL; Xie QM
    Int Immunopharmacol; 2011 Aug; 11(8):899-906. PubMed ID: 21354484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of a single inhaled dose of a VLA-4 antagonist on allergen-induced airway responses and airway inflammation in patients with asthma.
    Ravensberg AJ; Luijk B; Westers P; Hiemstra PS; Sterk PJ; Lammers JW; Rabe KF
    Allergy; 2006 Sep; 61(9):1097-103. PubMed ID: 16918513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 4-[1-[3-chloro-4-[N'-(5-fluoro-2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidinylmethoxy]benzoic acid as a potent, orally active VLA-4 antagonist.
    Muro F; Iimura S; Yoneda Y; Chiba J; Watanabe T; Setoguchi M; Iigou Y; Takayama G; Yokoyama M; Takashi T; Nakayama A; Machinaga N
    Bioorg Med Chem; 2008 Dec; 16(23):9991-10000. PubMed ID: 18952443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical evaluation of anti-inflammatory activities of the novel pyrrolopyrimidine PNU-142731A, a potential treatment for asthma.
    Chin JE; Hatfield CA; Winterrowd GE; Krzesicki RF; Shull KL; Fidler SF; Kolbasa KP; Brashler JR; Griffin RL; Fleming WE; Justen JM; Banitt LS; Bundy GL; Richards IM
    J Pharmacol Exp Ther; 1999 Jul; 290(1):188-95. PubMed ID: 10381775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of astilbic acid on airway hyperresponsiveness and inflammation in a mouse model of allergic asthma.
    Yuk JE; Lee MY; Kwon OK; Cai XF; Jang HY; Oh SR; Lee HK; Ahn KS
    Int Immunopharmacol; 2011 Feb; 11(2):266-73. PubMed ID: 21168540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small molecule, orally active, alpha4beta1/alpha4beta7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats.
    Cortijo J; Sanz MJ; Iranzo A; Montesinos JL; Nabah YN; Alfón J; Gómez LA; Merlos M; Morcillo EJ
    Br J Pharmacol; 2006 Mar; 147(6):661-70. PubMed ID: 16432509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma.
    Jung WK; Lee DY; Choi YH; Yea SS; Choi I; Park SG; Seo SK; Lee SW; Lee CM; Kim SK; Jeon YJ; Choi IW
    Life Sci; 2008 Mar; 82(13-14):797-805. PubMed ID: 18299139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bu-Shen-Yi-Qi formulae suppress chronic airway inflammation and regulate Th17/Treg imbalance in the murine ovalbumin asthma model.
    Wei Y; Luo QL; Sun J; Chen MX; Liu F; Dong JC
    J Ethnopharmacol; 2015 Apr; 164():368-77. PubMed ID: 25625352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alpha4beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice.
    Kenyon NJ; Liu R; O'Roark EM; Huang W; Peng L; Lam KS
    Eur J Pharmacol; 2009 Jan; 603(1-3):138-46. PubMed ID: 19103195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aclidinium bromide abrogates allergen-induced hyperresponsiveness and reduces eosinophilia in murine model of airway inflammation.
    Damera G; Jiang M; Zhao H; Fogle HW; Jester WF; Freire J; Panettieri RA
    Eur J Pharmacol; 2010 Dec; 649(1-3):349-53. PubMed ID: 20868661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma.
    Kim SH; Hong JH; Lee YC
    Eur J Pharmacol; 2013 Feb; 701(1-3):131-43. PubMed ID: 23201068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of airway hyperreactivity, edema, and lung cell infiltration by compound U-83836E in sensitized guinea pigs.
    Carvalho C; Jancar S; Sirois P
    Can J Physiol Pharmacol; 1998; 76(7-8):715-20. PubMed ID: 10030451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Immunotherapeutic Role of Bacterial Lysates in a Mouse Model of Asthma.
    Liu C; Huang R; Yao R; Yang A
    Lung; 2017 Oct; 195(5):563-569. PubMed ID: 28474108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clarithromycin suppresses airway hyperresponsiveness and inflammation in mouse models of asthma.
    Hrvacić B; Bosnjak B; Bosnar M; Ferencić Z; Glojnarić I; Eraković Haber V
    Eur J Pharmacol; 2009 Aug; 616(1-3):236-43. PubMed ID: 19560456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.