BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 23419374)

  • 1. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
    Chung C; Emili A; Frey BJ
    Bioinformatics; 2013 Apr; 29(7):821-9. PubMed ID: 23419374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
    Chung C; Liu J; Emili A; Frey BJ
    Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications.
    Liu J; Erassov A; Halina P; Canete M; Nguyen DV; Chung C; Cagney G; Ignatchenko A; Fong V; Emili A
    Anal Chem; 2008 Oct; 80(20):7846-54. PubMed ID: 18788753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach for untargeted post-translational modification identification using integer linear optimization and tandem mass spectrometry.
    Baliban RC; DiMaggio PA; Plazas-Mayorca MD; Young NL; Garcia BA; Floudas CA
    Mol Cell Proteomics; 2010 May; 9(5):764-79. PubMed ID: 20103568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common errors in mass spectrometry-based analysis of post-translational modifications.
    Kim MS; Zhong J; Pandey A
    Proteomics; 2016 Mar; 16(5):700-14. PubMed ID: 26667783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.
    Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra.
    Kertész-Farkas A; Reiz B; Vera R; Myers MP; Pongor S
    Bioinformatics; 2014 Jan; 30(2):234-41. PubMed ID: 24215026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.
    Chaudhuri R; Sadrieh A; Hoffman NJ; Parker BL; Humphrey SJ; Stöckli J; Hill AP; James DE; Yang JY
    BMC Genomics; 2015 Aug; 16(1):617. PubMed ID: 26283093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast multi-blind modification search through tandem mass spectrometry.
    Na S; Bandeira N; Paek E
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.010199. PubMed ID: 22186716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Species PTM Mapping from Phosphoproteomic Data.
    Chaudhuri R; Yang JY
    Methods Mol Biol; 2017; 1558():459-469. PubMed ID: 28150252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
    Bensmail H; Golek J; Moody MM; Semmes JO; Haoudi A
    Bioinformatics; 2005 May; 21(10):2210-24. PubMed ID: 15769836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoMo: discovery of statistically significant post-translational modification motifs.
    Cheng A; Grant CE; Noble WS; Bailey TL
    Bioinformatics; 2019 Aug; 35(16):2774-2782. PubMed ID: 30596994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling.
    Iannetta AA; Hicks LM
    Methods Mol Biol; 2022; 2499():1-41. PubMed ID: 35696073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
    Brown CW; Sridhara V; Boutz DR; Person MD; Marcotte EM; Barrick JE; Wilke CO
    BMC Genomics; 2017 Apr; 18(1):301. PubMed ID: 28412930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.