These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 23419374)

  • 1. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
    Chung C; Emili A; Frey BJ
    Bioinformatics; 2013 Apr; 29(7):821-9. PubMed ID: 23419374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
    Chung C; Liu J; Emili A; Frey BJ
    Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications.
    Liu J; Erassov A; Halina P; Canete M; Nguyen DV; Chung C; Cagney G; Ignatchenko A; Fong V; Emili A
    Anal Chem; 2008 Oct; 80(20):7846-54. PubMed ID: 18788753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach for untargeted post-translational modification identification using integer linear optimization and tandem mass spectrometry.
    Baliban RC; DiMaggio PA; Plazas-Mayorca MD; Young NL; Garcia BA; Floudas CA
    Mol Cell Proteomics; 2010 May; 9(5):764-79. PubMed ID: 20103568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common errors in mass spectrometry-based analysis of post-translational modifications.
    Kim MS; Zhong J; Pandey A
    Proteomics; 2016 Mar; 16(5):700-14. PubMed ID: 26667783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.
    Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra.
    Kertész-Farkas A; Reiz B; Vera R; Myers MP; Pongor S
    Bioinformatics; 2014 Jan; 30(2):234-41. PubMed ID: 24215026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.
    Chaudhuri R; Sadrieh A; Hoffman NJ; Parker BL; Humphrey SJ; Stöckli J; Hill AP; James DE; Yang JY
    BMC Genomics; 2015 Aug; 16(1):617. PubMed ID: 26283093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast multi-blind modification search through tandem mass spectrometry.
    Na S; Bandeira N; Paek E
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.010199. PubMed ID: 22186716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Species PTM Mapping from Phosphoproteomic Data.
    Chaudhuri R; Yang JY
    Methods Mol Biol; 2017; 1558():459-469. PubMed ID: 28150252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
    Bensmail H; Golek J; Moody MM; Semmes JO; Haoudi A
    Bioinformatics; 2005 May; 21(10):2210-24. PubMed ID: 15769836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoMo: discovery of statistically significant post-translational modification motifs.
    Cheng A; Grant CE; Noble WS; Bailey TL
    Bioinformatics; 2019 Aug; 35(16):2774-2782. PubMed ID: 30596994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling.
    Iannetta AA; Hicks LM
    Methods Mol Biol; 2022; 2499():1-41. PubMed ID: 35696073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
    Brown CW; Sridhara V; Boutz DR; Person MD; Marcotte EM; Barrick JE; Wilke CO
    BMC Genomics; 2017 Apr; 18(1):301. PubMed ID: 28412930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.