These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 23419374)
21. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various PTMs. Kang C; Yi GS BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S8. PubMed ID: 22373085 [TBL] [Abstract][Full Text] [Related]
22. Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Prus G; Hoegl A; Weinert BT; Choudhary C Trends Biochem Sci; 2019 Nov; 44(11):943-960. PubMed ID: 31296352 [TBL] [Abstract][Full Text] [Related]
23. Absolute quantitation of protein posttranslational modification isoform. Yang Z; Li N Methods Mol Biol; 2015; 1306():105-19. PubMed ID: 25930697 [TBL] [Abstract][Full Text] [Related]
24. Integrated data management and validation platform for phosphorylated tandem mass spectrometry data. Lahesmaa-Korpinen AM; Carlson SM; White FM; Hautaniemi S Proteomics; 2010 Oct; 10(19):3515-24. PubMed ID: 20827731 [TBL] [Abstract][Full Text] [Related]
25. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). Yakubu RR; Nieves E; Weiss LM Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048 [TBL] [Abstract][Full Text] [Related]
26. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
27. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications. Lu B; Chen T Bioinformatics; 2003 Oct; 19 Suppl 2():ii113-21. PubMed ID: 14534180 [TBL] [Abstract][Full Text] [Related]
28. Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry. Martin DM; Nett IR; Vandermoere F; Barber JD; Morrice NA; Ferguson MA Bioinformatics; 2010 Sep; 26(17):2153-9. PubMed ID: 20651112 [TBL] [Abstract][Full Text] [Related]
29. ISPTM: an iterative search algorithm for systematic identification of post-translational modifications from complex proteome mixtures. Huang X; Huang L; Peng H; Guru A; Xue W; Hong SY; Liu M; Sharma S; Fu K; Caprez AP; Swanson DR; Zhang Z; Ding SJ J Proteome Res; 2013 Sep; 12(9):3831-42. PubMed ID: 23919725 [TBL] [Abstract][Full Text] [Related]
30. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Liu Y; Wang M; Xi J; Luo F; Li A Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096 [TBL] [Abstract][Full Text] [Related]
31. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. Shteynberg DD; Deutsch EW; Campbell DS; Hoopmann MR; Kusebauch U; Lee D; Mendoza L; Midha MK; Sun Z; Whetton AD; Moritz RL J Proteome Res; 2019 Dec; 18(12):4262-4272. PubMed ID: 31290668 [TBL] [Abstract][Full Text] [Related]
32. Identification of post-translational modifications by blind search of mass spectra. Tsur D; Tanner S; Zandi E; Bafna V; Pevzner PA Nat Biotechnol; 2005 Dec; 23(12):1562-7. PubMed ID: 16311586 [TBL] [Abstract][Full Text] [Related]
33. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways. Cruz ER; Nguyen H; Nguyen T; Wallace IS Plant J; 2019 Sep; 99(5):1003-1013. PubMed ID: 31034103 [TBL] [Abstract][Full Text] [Related]
34. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Huang KY; Su MG; Kao HJ; Hsieh YC; Jhong JH; Cheng KH; Huang HD; Lee TY Nucleic Acids Res; 2016 Jan; 44(D1):D435-46. PubMed ID: 26578568 [TBL] [Abstract][Full Text] [Related]
35. Global Post-Translational Modification Discovery. Li Q; Shortreed MR; Wenger CD; Frey BL; Schaffer LV; Scalf M; Smith LM J Proteome Res; 2017 Apr; 16(4):1383-1390. PubMed ID: 28248113 [TBL] [Abstract][Full Text] [Related]
36. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Li F; Li C; Marquez-Lago TT; Leier A; Akutsu T; Purcell AW; Ian Smith A; Lithgow T; Daly RJ; Song J; Chou KC Bioinformatics; 2018 Dec; 34(24):4223-4231. PubMed ID: 29947803 [TBL] [Abstract][Full Text] [Related]
37. Systematic characterization and prediction of post-translational modification cross-talk between proteins. Huang R; Huang Y; Guo Y; Ji S; Lu M; Li T Bioinformatics; 2019 Aug; 35(15):2626-2633. PubMed ID: 30590394 [TBL] [Abstract][Full Text] [Related]
38. BayesENproteomics: Bayesian Elastic Nets for Quantification of Peptidoforms in Complex Samples. Mallikarjun V; Richardson SM; Swift J J Proteome Res; 2020 Jun; 19(6):2167-2184. PubMed ID: 32319298 [TBL] [Abstract][Full Text] [Related]
39. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Kelstrup CD; Frese C; Heck AJ; Olsen JV; Nielsen ML Mol Cell Proteomics; 2014 Aug; 13(8):1914-24. PubMed ID: 24895383 [TBL] [Abstract][Full Text] [Related]
40. [Post-translational modification (PTM) bioinformatics in China: progresses and perspectives]. Liu ZX; Cai YD; Guo XJ; Li A; Li TT; Qiu JD; Ren J; Shi SP; Song JN; Wang MH; Xie L; Xue Y; Zhang ZD; Zhao XM Yi Chuan; 2015 Jul; 37(7):621-34. PubMed ID: 26351162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]