These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 23419643)
1. Galactosylated trimethyl chitosan-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Zhang J; Tang C; Yin C Biomaterials; 2013 May; 34(14):3667-77. PubMed ID: 23419643 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. He C; Yin L; Tang C; Yin C Biomaterials; 2013 Apr; 34(11):2843-54. PubMed ID: 23347838 [TBL] [Abstract][Full Text] [Related]
3. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. He C; Yin L; Song Y; Tang C; Yin C Acta Biomater; 2015 Apr; 17():98-106. PubMed ID: 25662912 [TBL] [Abstract][Full Text] [Related]
4. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Chu S; Tang C; Yin C Biomaterials; 2015 Jun; 52():229-39. PubMed ID: 25818429 [TBL] [Abstract][Full Text] [Related]
5. Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. Cheng W; Tang C; Yin C J Gene Med; 2015; 17(10-12):244-56. PubMed ID: 26418829 [TBL] [Abstract][Full Text] [Related]
6. Trimethyl chitosan-cysteine nanoparticles for systemic delivery of TNF-α siRNA via oral and intraperitoneal routes. He C; Yin L; Tang C; Yin C Pharm Res; 2013 Oct; 30(10):2596-606. PubMed ID: 23715740 [TBL] [Abstract][Full Text] [Related]
7. Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid) nanoparticles loaded with TNF-ɑ siRNA provide a novel strategy for the experimental treatment of ulcerative colitis. Huang Y; Guo J; Gui S Eur J Pharm Sci; 2018 Dec; 125():232-243. PubMed ID: 30315858 [TBL] [Abstract][Full Text] [Related]
8. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Li TS; Yawata T; Honke K Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005 [TBL] [Abstract][Full Text] [Related]
9. Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Han L; Tang C; Yin C Biomaterials; 2014 May; 35(15):4589-600. PubMed ID: 24613049 [TBL] [Abstract][Full Text] [Related]
10. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. He C; Yue H; Xu L; Liu Y; Song Y; Tang C; Yin C Acta Biomater; 2020 Feb; 103():213-222. PubMed ID: 31812844 [TBL] [Abstract][Full Text] [Related]
11. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. Raja MA; Katas H; Jing Wen T PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222 [TBL] [Abstract][Full Text] [Related]
12. Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in Raw 264.7 macrophages. Xiao B; Ma P; Ma L; Chen Q; Si X; Walter L; Merlin D J Colloid Interface Sci; 2017 Mar; 490():520-528. PubMed ID: 27918990 [TBL] [Abstract][Full Text] [Related]
13. Development and characterisation of chitosan nanoparticles for siRNA delivery. Katas H; Alpar HO J Control Release; 2006 Oct; 115(2):216-25. PubMed ID: 16959358 [TBL] [Abstract][Full Text] [Related]
14. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Laroui H; Dalmasso G; Nguyen HT; Yan Y; Sitaraman SV; Merlin D Gastroenterology; 2010 Mar; 138(3):843-53.e1-2. PubMed ID: 19909746 [TBL] [Abstract][Full Text] [Related]
15. Fab'-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. Laroui H; Viennois E; Xiao B; Canup BS; Geem D; Denning TL; Merlin D J Control Release; 2014 Jul; 186():41-53. PubMed ID: 24810114 [TBL] [Abstract][Full Text] [Related]
16. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Gu J; Al-Bayati K; Ho EA Drug Deliv Transl Res; 2017 Aug; 7(4):497-506. PubMed ID: 28315051 [TBL] [Abstract][Full Text] [Related]
17. Ternary polymeric nanoparticles for oral siRNA delivery. Zhang J; He C; Tang C; Yin C Pharm Res; 2013 May; 30(5):1228-39. PubMed ID: 23307349 [TBL] [Abstract][Full Text] [Related]
18. Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes. Han L; Tang C; Yin C Biomaterials; 2013 Jul; 34(21):5317-27. PubMed ID: 23591392 [TBL] [Abstract][Full Text] [Related]
19. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821 [TBL] [Abstract][Full Text] [Related]
20. Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Xiao B; Xu Z; Viennois E; Zhang Y; Zhang Z; Zhang M; Han MK; Kang Y; Merlin D Mol Ther; 2017 Jul; 25(7):1628-1640. PubMed ID: 28143741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]