BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23419991)

  • 1. Synergistic effect of Trichoderma reesei cellulases on agricultural tea waste for adsorption of heavy metal Cr(VI).
    Ng IS; Wu X; Yang X; Xie Y; Lu Y; Chen C
    Bioresour Technol; 2013 Oct; 145():297-301. PubMed ID: 23419991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a new Cr(VI)-biosorbent from agricultural biowaste.
    Park D; Lim SR; Yun YS; Park JM
    Bioresour Technol; 2008 Dec; 99(18):8810-8. PubMed ID: 18511265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials.
    Albadarin AB; Mangwandi C; Walker GM; Allen SJ; Ahmad MN; Khraisheh M
    J Environ Manage; 2013 Jan; 114():190-201. PubMed ID: 23134975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea.
    Cherdchoo W; Nithettham S; Charoenpanich J
    Chemosphere; 2019 Apr; 221():758-767. PubMed ID: 30684773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of chromium (Cr(III)/Cr(VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production.
    Kim EJ; Park S; Hong HJ; Choi YE; Yang JW
    Bioresour Technol; 2011 Dec; 102(24):11155-60. PubMed ID: 22014703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution.
    Chand R; Narimura K; Kawakita H; Ohto K; Watari T; Inoue K
    J Hazard Mater; 2009 Apr; 163(1):245-50. PubMed ID: 18684562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.
    Suksabye P; Thiravetyan P
    J Environ Manage; 2012 Jul; 102():1-8. PubMed ID: 22421026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium.
    Duran C; Ozdes D; Gundogdu A; Imamoglu M; Senturk HB
    Anal Chim Acta; 2011 Feb; 688(1):75-83. PubMed ID: 21296208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of chromium and its distribution in tea leaves and tea infusion using titanium dioxide nanotubes packed microcolumn coupled with inductively coupled plasma mass spectrometry.
    Chen S; Zhu S; He Y; Lu D
    Food Chem; 2014 May; 150():254-9. PubMed ID: 24360447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite.
    Bhaumik M; Maity A; Srinivasu VV; Onyango MS
    J Hazard Mater; 2011 Jun; 190(1-3):381-90. PubMed ID: 21497438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi.
    Ng IS; Tsai SW; Ju YM; Yu SM; Ho TH
    Bioresour Technol; 2011 May; 102(10):6073-81. PubMed ID: 21377353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures.
    Park D; Yun YS; Lee HW; Park JM
    Bioresour Technol; 2008 Mar; 99(5):1141-7. PubMed ID: 17416519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction.
    Park D; Lim SR; Yun YS; Park JM
    Chemosphere; 2007 Dec; 70(2):298-305. PubMed ID: 17644158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology.
    Jain M; Garg VK; Kadirvelu K
    Bioresour Technol; 2011 Jan; 102(2):600-5. PubMed ID: 20739179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.
    Cui H; Fu M; Yu S; Wang MK
    J Hazard Mater; 2011 Feb; 186(2-3):1625-31. PubMed ID: 21215518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia.
    Barrera H; Ureña-Núñez F; Bilyeu B; Barrera-Díaz C
    J Hazard Mater; 2006 Aug; 136(3):846-53. PubMed ID: 16504390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents.
    Kushwaha S; Sreedhar B; Sudhakar PP
    Bioresour Technol; 2012 Jul; 116():15-23. PubMed ID: 22609649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons.
    Bansal M; Singh D; Garg VK
    J Hazard Mater; 2009 Nov; 171(1-3):83-92. PubMed ID: 19553015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.