These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 23420198)

  • 41. Crucial genes and pathways in chicken germ stem cell differentiation.
    Zhang Z; Elsayed AK; Shi Q; Zhang Y; Zuo Q; Li D; Lian C; Tang B; Xiao T; Xu Q; Chang G; Chen G; Zhang L; Wang K; Wang Y; Jin K; Wang Y; Song J; Cui H; Li B
    J Biol Chem; 2015 May; 290(21):13605-21. PubMed ID: 25847247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling.
    Chandrasekaran S; Zhang J; Sun Z; Zhang L; Ross CA; Huang YC; Asara JM; Li H; Daley GQ; Collins JJ
    Cell Rep; 2017 Dec; 21(10):2965-2977. PubMed ID: 29212039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A plethora of human pluripotent stem cells.
    Gao L; Thilakavathy K; Nordin N
    Cell Biol Int; 2013 Sep; 37(9):875-87. PubMed ID: 23619972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The microenvironment of the embryonic neural stem cell: lessons from adult niches?
    Lathia JD; Rao MS; Mattson MP; Ffrench-Constant C
    Dev Dyn; 2007 Dec; 236(12):3267-82. PubMed ID: 17937403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular mechanisms of somatic stem cell aging.
    Jung Y; Brack AS
    Curr Top Dev Biol; 2014; 107():405-38. PubMed ID: 24439814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural stem cell metabolism revisited: a critical role for mitochondria.
    Scandella V; Petrelli F; Moore DL; Braun SMG; Knobloch M
    Trends Endocrinol Metab; 2023 Aug; 34(8):446-461. PubMed ID: 37380501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functions of BMP signaling in embryonic stem cell fate determination.
    Li Z; Chen YG
    Exp Cell Res; 2013 Jan; 319(2):113-9. PubMed ID: 23051821
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells.
    Hayashi Y; Otsuka K; Ebina M; Igarashi K; Takehara A; Matsumoto M; Kanai A; Igarashi K; Soga T; Matsui Y
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8289-8294. PubMed ID: 28716939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming.
    Li W; Ding S
    Trends Pharmacol Sci; 2010 Jan; 31(1):36-45. PubMed ID: 19896224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors.
    Xie T
    Wiley Interdiscip Rev Dev Biol; 2013; 2(2):261-73. PubMed ID: 24009036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network.
    Huang G; Ye S; Zhou X; Liu D; Ying QL
    Cell Mol Life Sci; 2015 May; 72(9):1741-57. PubMed ID: 25595304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs.
    Menon S; Shailendra S; Renda A; Longaker M; Quarto N
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26805822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A role for polyamine regulators in ESC self-renewal.
    Zhao T; Goh KJ; Ng HH; Vardy LA
    Cell Cycle; 2012 Dec; 11(24):4517-23. PubMed ID: 23165208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulating Glypican4 suppresses tumorigenicity of embryonic stem cells while preserving self-renewal and pluripotency.
    Fico A; De Chevigny A; Egea J; Bösl MR; Cremer H; Maina F; Dono R
    Stem Cells; 2012 Sep; 30(9):1863-74. PubMed ID: 22761013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells.
    Creppe C; Janich P; Cantariño N; Noguera M; Valero V; Musulén E; Douet J; Posavec M; Martín-Caballero J; Sumoy L; Di Croce L; Benitah SA; Buschbeck M
    Mol Cell Biol; 2012 Apr; 32(8):1442-52. PubMed ID: 22331466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The TCL1 function revisited focusing on metabolic requirements of stemness.
    Fiorenza MT; Rava A
    Cell Cycle; 2019 Nov; 18(22):3055-3063. PubMed ID: 31564197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.
    Shimazaki T
    Keio J Med; 2016; 65(1):1-15. PubMed ID: 26853878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells.
    Liu N; Lu M; Tian X; Han Z
    J Cell Physiol; 2007 May; 211(2):279-86. PubMed ID: 17195167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells.
    Burdon T; Chambers I; Stracey C; Niwa H; Smith A
    Cells Tissues Organs; 1999; 165(3-4):131-43. PubMed ID: 10592385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Progesterone signaling/miR-200a/zeb2 axis regulates self-renewal of mouse embryonic stem cells.
    Ai Y; Liu Q; Li Y; Duan T
    Biomed Pharmacother; 2014 Mar; 68(2):201-8. PubMed ID: 24433831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.