These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23420275)

  • 21. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of NO2 and NO with carbonaceous adsorbents containing silver nanoparticles.
    Seredych M; Bashkova S; Pietrzak R; Bandosz TJ
    Langmuir; 2010 Jun; 26(12):9457-64. PubMed ID: 20486717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.
    Ensuncho-Muñoz AE; Carriazo JG
    Environ Technol; 2015; 36(5-8):547-55. PubMed ID: 25189634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic composites.
    Hu J; Zhao D; Wang X
    Water Sci Technol; 2011; 63(5):917-23. PubMed ID: 21411941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of growing CNTs onto bamboo charcoals on adsorption of copper ions in aqueous solution.
    Zhang J; Huang ZH; Lv R; Yang QH; Kang F
    Langmuir; 2009 Jan; 25(1):269-74. PubMed ID: 19053622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials.
    Gao Z; Bandosz TJ; Zhao Z; Han M; Liang C; Qiu J
    Langmuir; 2008 Oct; 24(20):11701-10. PubMed ID: 18817419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics and mechanisms of Cu(II) biosorption by disintegrated aerobic granules.
    Wang XH; Song RH; Teng SX; Gao MM; Ni JY; Liu FF; Wang SG; Gao BY
    J Hazard Mater; 2010 Jul; 179(1-3):431-7. PubMed ID: 20362391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.
    Li L; Liu S; Liu J
    J Hazard Mater; 2011 Aug; 192(2):683-90. PubMed ID: 21683520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbonaceous materials for removal and recovery of phosphate species: Limitations, successes and future improvement.
    Recepoglu YK; Goren AY; Orooji Y; Khataee A
    Chemosphere; 2022 Jan; 287(Pt 2):132177. PubMed ID: 34826904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste.
    Nakanishi A; Tamai M; Kawasaki N; Nakamura T; Tanada S
    J Colloid Interface Sci; 2002 Aug; 252(2):393-6. PubMed ID: 16290804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Cu(II) from water by tetrakis(4-carboxyphenyl) porphyrin-functionalized mesoporous silica.
    Jeong EY; Ansari MB; Mo YH; Park SE
    J Hazard Mater; 2011 Jan; 185(2-3):1311-7. PubMed ID: 21055872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cadmium(II) adsorption using functional mesoporous silica and activated carbon.
    Machida M; Fotoohi B; Amamo Y; Ohba T; Kanoh H; Mercier L
    J Hazard Mater; 2012 Jun; 221-222():220-7. PubMed ID: 22579402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of copper from aqueous solution using iron-containing adsorbents derived from methane fermentation sludge.
    Qian Q; Mochidzuki K; Fujii T; Sakoda A
    J Hazard Mater; 2009 Dec; 172(2-3):1137-44. PubMed ID: 19726131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites.
    Fan L; Luo C; Sun M; Li X; Qiu H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():523-9. PubMed ID: 23261576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Feb; 162(1):391-401. PubMed ID: 18579295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents.
    Aydin H; Bulut Y; Yerlikaya C
    J Environ Manage; 2008 Apr; 87(1):37-45. PubMed ID: 17349732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials.
    Sotelo JL; Rodríguez AR; Mateos MM; Hernández SD; Torrellas SA; Rodríguez JG
    J Environ Sci Health B; 2012; 47(7):640-52. PubMed ID: 22560026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Sun Y; Yang S; Sheng G; Guo Z; Wang X
    J Environ Radioact; 2012 Feb; 105():40-7. PubMed ID: 22230020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.