These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 23420601)

  • 1. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.
    Tomas M; Blumhardt P; Deutzmann A; Schwarz T; Kromm D; Leitenstorfer A; Ferrando-May E
    J Biophotonics; 2013 Aug; 6(8):645-55. PubMed ID: 23420601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein.
    Serebrovskaya EO; Gorodnicheva TV; Ermakova GV; Solovieva EA; Sharonov GV; Zagaynova EV; Chudakov DM; Lukyanov S; Zaraisky AG; Lukyanov KA
    Biochem J; 2011 Apr; 435(1):65-71. PubMed ID: 21214518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing nucleocytoplasmic transport by two-photon activation of PA-GFP.
    Chen Y; MacDonald PJ; Skinner JP; Patterson GH; Müller JD
    Microsc Res Tech; 2006 Mar; 69(3):220-6. PubMed ID: 16538629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling.
    Ferrando-May E; Tomas M; Blumhardt P; Stöckl M; Fuchs M; Leitenstorfer A
    Front Genet; 2013; 4():135. PubMed ID: 23882280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond near-infrared laser pulse induced strand breaks in mammalian cells.
    Tirlapur UK; König K
    Cell Mol Biol (Noisy-le-grand); 2001; 47 Online Pub():OL131-4. PubMed ID: 11936858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time.
    Martini J; Schmied K; Palmisano R; Toensing K; Anselmetti D; Merkle T
    J Struct Biol; 2007 Jun; 158(3):401-9. PubMed ID: 17363273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks.
    Lee SY; Park JH; Kim S; Park EJ; Yun Y; Kwon J
    Biochem J; 2005 May; 388(Pt 1):7-15. PubMed ID: 15737070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC.
    Hoogstraten D; Bergink S; Ng JM; Verbiest VH; Luijsterburg MS; Geverts B; Raams A; Dinant C; Hoeijmakers JH; Vermeulen W; Houtsmuller AB
    J Cell Sci; 2008 Sep; 121(Pt 17):2850-9. PubMed ID: 18682493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo manipulation of fluorescently labeled organelles in living cells by multiphoton excitation.
    Watanabe W; Matsunaga S; Higashi T; Fukui K; Itoh K
    J Biomed Opt; 2008; 13(3):031213. PubMed ID: 18601537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.
    Botchway SW; Reynolds P; Parker AW; O'Neill P
    Mutat Res; 2010; 704(1-3):38-44. PubMed ID: 20079460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of mammalian NER proteins.
    Vermeulen W
    DNA Repair (Amst); 2011 Jul; 10(7):760-71. PubMed ID: 21550320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the dynamic nature of the interactions between nuclear proteins and histones upon DNA damage using an immobilized peptide chemical proteomics approach.
    Dirksen EH; Pinkse MW; Rijkers DT; Cloos J; Liskamp RM; Slijper M; Heck AJ
    J Proteome Res; 2006 Sep; 5(9):2380-8. PubMed ID: 16944950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin.
    Schmalz MF; Wieser I; Schindler F; Czada C; Leitenstorfer A; Ferrando-May E
    Opt Lett; 2018 Jun; 43(12):2877-2880. PubMed ID: 29905713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sequences that target BRCA1 to nuclear foci following alkylative DNA damage.
    Au WW; Henderson BR
    Cell Signal; 2007 Sep; 19(9):1879-92. PubMed ID: 17531442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region.
    Schneider M; Barozzi S; Testa I; Faretta M; Diaspro A
    Biophys J; 2005 Aug; 89(2):1346-52. PubMed ID: 15908572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks.
    Stucki M; Clapperton JA; Mohammad D; Yaffe MB; Smerdon SJ; Jackson SP
    Cell; 2005 Dec; 123(7):1213-26. PubMed ID: 16377563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of DNA photolesions by two-photon absorption of a frequency-doubled Ti:sapphire laser.
    Tycon MA; Chakraborty A; Fecko CJ
    J Photochem Photobiol B; 2011 Feb; 102(2):161-8. PubMed ID: 21146997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific local induction of DNA strand breaks by infrared multi-photon absorption.
    Träutlein D; Deibler M; Leitenstorfer A; Ferrando-May E
    Nucleic Acids Res; 2010 Jan; 38(3):e14. PubMed ID: 19906733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale histone localization in live cells reveals reduced chromatin mobility in response to DNA damage.
    Liu J; Vidi PA; Lelièvre SA; Irudayaraj JM
    J Cell Sci; 2015 Feb; 128(3):599-604. PubMed ID: 25501817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer proflavine.
    Shafirovich V; Dourandin A; Luneva NP; Singh C; Kirigin F; Geacintov NE
    Photochem Photobiol; 1999 Mar; 69(3):265-74. PubMed ID: 10232956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.