These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2342073)

  • 41. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation.
    Vervoort LM; Ronden JE; Thijssen HH
    Biochem Pharmacol; 1997 Oct; 54(8):871-6. PubMed ID: 9354587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduced thioredoxin: a possible physiological cofactor for vitamin K epoxide reductase. Further support for an active site disulfide.
    Silverman RB; Nandi DL
    Biochem Biophys Res Commun; 1988 Sep; 155(3):1248-54. PubMed ID: 3140805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and synthesis of novel diphenacoum-derived, conformation-restricted vitamin K 2,3-epoxide reductase inhibitors.
    Chen DU; Kuo PY; Yang DY
    Bioorg Med Chem Lett; 2005 May; 15(10):2665-8. PubMed ID: 15863338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Warfarin resistance. Vitamin K epoxide reductase of Scottish resistance genes is not irreversibly blocked by warfarin.
    Thijssen HH
    Biochem Pharmacol; 1987 Sep; 36(17):2753-7. PubMed ID: 3632704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.
    Jin DY; Tie JK; Stafford DW
    Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural prenylquinones inhibit the enzymes of the vitamin K cycle in vitro.
    Ronden JE; Soute BA; Thijssen HH; Saupe J; Vermeer C
    Biochim Biophys Acta; 1996 Nov; 1298(1):87-94. PubMed ID: 8948492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. R- and S-Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat.
    Fasco MJ; Principe LM
    J Biol Chem; 1982 May; 257(9):4894-901. PubMed ID: 7068669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solubilization and characterization of vitamin K epoxide reductase from normal and warfarin-resistant rat liver microsomes.
    Hildebrandt EF; Preusch PC; Patterson JL; Suttie JW
    Arch Biochem Biophys; 1984 Feb; 228(2):480-92. PubMed ID: 6696443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2.
    Chu PH; Huang TY; Williams J; Stafford DW
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19308-13. PubMed ID: 17164330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of fluoro- and hydroxy-derivatives of vitamin K as substrates or inhibitors of the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW
    Biofactors; 1992 Jan; 3(3):205-9. PubMed ID: 1599614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R; Martin LF
    J Clin Invest; 1985 Nov; 76(5):1879-84. PubMed ID: 3932474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro effect of beta-lactam antibiotics and N-methyltetrazolethiol on microsomal vitamin K epoxide reductase in rats.
    Kawamoto K; Touchi A; Sugeno K; Matsubara T
    Jpn J Pharmacol; 1988 Jun; 47(2):169-78. PubMed ID: 3199593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and properties of a factor from rat liver cytosol which stimulates vitamin K epoxide reductase.
    Siegfried CM
    Arch Biochem Biophys; 1983 May; 223(1):129-39. PubMed ID: 6859852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent findings in understanding the biological function of vitamin K.
    Uotila L; Suttie JW
    Med Biol; 1982 Feb; 60(1):16-24. PubMed ID: 6803084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat.
    de Boer-van den Berg MA; Thijssen HH; Vermeer C
    Biochim Biophys Acta; 1986 Oct; 884(1):150-7. PubMed ID: 3490277
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The relationship between inhibition of vitamin K1 2,3-epoxide reductase and reduction of clotting factor activity with warfarin.
    Choonara IA; Malia RG; Haynes BP; Hay CR; Cholerton S; Breckenridge AM; Preston FE; Park BK
    Br J Clin Pharmacol; 1988 Jan; 25(1):1-7. PubMed ID: 3370190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of trifluoromethyl analogs of vitamin K as substrates for the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW; Taguchi T; Suda Y; Kobayashi Y
    Biofactors; 1988 Oct; 1(3):255-9. PubMed ID: 3256324
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydroxycoumarin anticoagulant activity.
    Thijssen HH; Baars LG; Vervoort-Peters HT
    Br J Pharmacol; 1988 Nov; 95(3):675-82. PubMed ID: 3207986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.