These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23420805)

  • 21. Self-assembled 3D architectures of Bi2TiO4F2 as a new durable visible-light photocatalyst.
    Jiang B; Zhang P; Zhang Y; Wu L; Li H; Zhang D; Li G
    Nanoscale; 2012 Jan; 4(2):455-60. PubMed ID: 22095258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity.
    Xiang Q; Yu J; Wang W; Jaroniec M
    Chem Commun (Camb); 2011 Jun; 47(24):6906-8. PubMed ID: 21556416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.
    Lee JP; Choi S; Park S
    Langmuir; 2011 Jan; 27(2):809-14. PubMed ID: 21162520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple photoreduction of graphene oxide nanosheet under mild conditions.
    Matsumoto Y; Koinuma M; Kim SY; Watanabe Y; Taniguchi T; Hatakeyama K; Tateishi H; Ida S
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3461-6. PubMed ID: 21114256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications.
    Ma S; Li R; Lv C; Xu W; Gou X
    J Hazard Mater; 2011 Aug; 192(2):730-40. PubMed ID: 21684076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities.
    Zhang Z; Xiao F; Guo Y; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2227-33. PubMed ID: 23429833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced photocatalysis of pentachlorophenol by metal-modified titanium (IV) oxide.
    Lin YJ; Tseng SL; Huang WJ; Wu WJ
    J Environ Sci Health B; 2006; 41(7):1143-58. PubMed ID: 16923597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editorial: A current perspective on photocatalysis.
    Fujita E; Muckerman JT; Domen K
    ChemSusChem; 2011 Feb; 4(2):155-7. PubMed ID: 21328547
    [No Abstract]   [Full Text] [Related]  

  • 30. Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis.
    Zoh KD; Kim TS; Kim JG; Choi KH
    Water Sci Technol; 2005; 52(8):45-52. PubMed ID: 16312950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B.
    Jiang Z; Wang H; Huang H; Cao C
    Chemosphere; 2004 Aug; 56(5):503-8. PubMed ID: 15212916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoinduced electron accumulation in colloidally dispersed wide band-gap semiconductor nanosheets.
    Nakato T; Yamada Y; Nakamura M; Takahashi A
    J Colloid Interface Sci; 2011 Feb; 354(1):38-44. PubMed ID: 21055763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular precursors for the synthesis of anisotropic Cu₂S nanocrystals.
    Bryks W; Wette M; Velez N; Hsu SW; Tao AR
    J Am Chem Soc; 2014 Apr; 136(17):6175-8. PubMed ID: 24712869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoinduced thermal copper reduction onto gold nanocrystals under potentiostatic control.
    Redmond PL; Walter EC; Brus LE
    J Phys Chem B; 2006 Dec; 110(50):25158-62. PubMed ID: 17165959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A heterostructure composed of conjugated polymer and copper sulfide nanoparticles.
    Narizzano R; Erokhin V; Nicolini C
    J Phys Chem B; 2005 Aug; 109(33):15798-802. PubMed ID: 16853006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly enantioselective and efficient asymmetric epoxidation catalysts: inorganic nanosheets modified with α-amino acids as ligands.
    Wang J; Zhao L; Shi H; He J
    Angew Chem Int Ed Engl; 2011 Sep; 50(39):9171-6. PubMed ID: 21919152
    [No Abstract]   [Full Text] [Related]  

  • 37. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-beta-cyclodextrin as a template under sonication.
    Xu JZ; Xu S; Geng J; Li GX; Zhu JJ
    Ultrason Sonochem; 2006 Jul; 13(5):451-4. PubMed ID: 16288896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.
    Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H
    ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production.
    Barreca D; Fornasiero P; Gasparotto A; Gombac V; Maccato C; Montini T; Tondello E
    ChemSusChem; 2009; 2(3):230-3. PubMed ID: 19235823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extremely stable photoinduced charge separation in a colloidal system composed of semiconducting niobate and clay nanosheets.
    Miyamoto N; Yamada Y; Koizumi S; Nakato T
    Angew Chem Int Ed Engl; 2007; 46(22):4123-7. PubMed ID: 17444581
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.