These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23420813)

  • 1. Rapid determination of α-tocopherol in cereal grains using dispersive liquid-liquid microextraction followed by HPLC.
    Liu S; Xie Q; Cao J; Song P; Chen J; Bai W
    J Sep Sci; 2013 Mar; 36(6):1135-41. PubMed ID: 23420813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of saponification and dispersive liquid-liquid microextraction for the determination of tocopherols and tocotrienols in cereals by reversed-phase high-performance liquid chromatography.
    Shammugasamy B; Ramakrishnan Y; Ghazali HM; Muhammad K
    J Chromatogr A; 2013 Jul; 1300():31-7. PubMed ID: 23587317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of dispersive liquid-liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products.
    Campone L; Piccinelli AL; Celano R; Rastrelli L
    J Chromatogr A; 2011 Oct; 1218(42):7648-54. PubMed ID: 21636088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-density solvent-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of warfarin in human plasma.
    Ghambari H; Hadjmohammadi M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 899():66-71. PubMed ID: 22622064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of salmeterol in dried blood spot using an ionic liquid based dispersive liquid-liquid microextraction coupled with HPLC.
    Hatami M; Karimnia E; Farhadi K
    J Pharm Biomed Anal; 2013 Nov; 85():283-7. PubMed ID: 23973634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1271(1):56-61. PubMed ID: 23237715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up.
    Afzali D; Ghanbarian M; Mostafavi A; Shamspur T; Ghaseminezhad S
    J Chromatogr A; 2012 Jul; 1247():35-41. PubMed ID: 22673813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of insecticides in water using in situ halide exchange reaction-assisted ionic liquid dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Li S; Gao H; Zhang J; Li Y; Peng B; Zhou Z
    J Sep Sci; 2011 Nov; 34(22):3178-85. PubMed ID: 22012623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-controlled dispersive liquid-liquid microextraction for the analysis of ionisable compounds in complex matrices: Case study of ochratoxin A in cereals.
    Campone L; Piccinelli AL; Celano R; Rastrelli L
    Anal Chim Acta; 2012 Nov; 754():61-6. PubMed ID: 23140955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with HPLC with ultraviolet detector for the determination of fungicides.
    Gao Y; Zhou Q; Xie G; Yao Z
    J Sep Sci; 2012 Dec; 35(24):3569-74. PubMed ID: 23166097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water.
    Li Y; Hu J; Liu X; Fu L; Zhang X; Wang X
    J Sep Sci; 2008 Jul; 31(13):2371-6. PubMed ID: 18646259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils.
    Liu S; Xie Q; Chen J; Sun J; He H; Zhang X
    J Chromatogr A; 2013 Jun; 1295():16-23. PubMed ID: 23683892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous determination of tetrahydropalmatine and tetrahydroberberine in rat urine using dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.
    Zhang M; Le J; Wen J; Chai Y; Fan G; Hong Z
    J Sep Sci; 2011 Nov; 34(22):3279-86. PubMed ID: 22028314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples.
    Ranjbari E; Biparva P; Hadjmohammadi MR
    Talanta; 2012 Jan; 89():117-23. PubMed ID: 22284468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemometrics assisted dispersive liquid-liquid microextraction for quantification of seven UV filters in urine samples by HPLC-DAD.
    Vosough M; Mojdehi NR; Salemi A
    J Sep Sci; 2012 Dec; 35(24):3575-85. PubMed ID: 23225721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design.
    Kamankesh M; Mohammadi A; Tehrani ZM; Ferdowsi R; Hosseini H
    Talanta; 2013 May; 109():46-51. PubMed ID: 23618139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction and determination of opium alkaloids in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Shamsipur M; Fattahi N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2978-83. PubMed ID: 21925978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecularly imprinted solid phase extraction for the selective HPLC determination of alpha-tocopherol in bay leaves.
    Puoci F; Cirillo G; Curcio M; Iemma F; Spizzirri UG; Picci N
    Anal Chim Acta; 2007 Jun; 593(2):164-70. PubMed ID: 17543603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography.
    Ranjbari E; Golbabanezhad-Azizi AA; Hadjmohammadi MR
    Talanta; 2012 May; 94():116-22. PubMed ID: 22608423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.