These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2342112)

  • 1. Temperature dependence of the structure and dynamics of myoglobin. A simulation approach.
    Kuczera K; Kuriyan J; Karplus M
    J Mol Biol; 1990 May; 213(2):351-73. PubMed ID: 2342112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix.
    Cottone G; Cordone L; Ciccotti G
    Biophys J; 2001 Feb; 80(2):931-8. PubMed ID: 11159460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Protein Eng; 1992 Oct; 5(7):703-14. PubMed ID: 1480623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.
    Melchers B; Knapp EW; Parak F; Cordone L; Cupane A; Leone M
    Biophys J; 1996 May; 70(5):2092-9. PubMed ID: 9172733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of myoglobin at 298 degrees K. Results from a 300-ps computer simulation.
    Levy RM; Sheridan RP; Keepers JW; Dubey GS; Swaminathan S; Karplus M
    Biophys J; 1985 Sep; 48(3):509-18. PubMed ID: 3840041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of liganded myoglobin.
    Frauenfelder H; Petsko GA
    Biophys J; 1980 Oct; 32(1):465-83. PubMed ID: 7248456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin.
    Caves LS; Evanseck JD; Karplus M
    Protein Sci; 1998 Mar; 7(3):649-66. PubMed ID: 9541397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra.
    Smith J; Kuczera K; Karplus M
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1601-5. PubMed ID: 2304919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A consistent picture of protein dynamics.
    Parak F; Knapp EW
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7088-92. PubMed ID: 6594683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrated myoglobin's anharmonic fluctuations are not primarily due to dihedral transitions.
    Steinbach PJ; Brooks BR
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):55-9. PubMed ID: 8552674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics of sickle and normal hemoglobins.
    Prabhakaran M; Johnson ME
    Biopolymers; 1993 May; 33(5):735-42. PubMed ID: 8343575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of cytochrome c: correlation to hydrogen exchange.
    García AE; Hummer G
    Proteins; 1999 Aug; 36(2):175-91. PubMed ID: 10398365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K.
    Hartmann H; Parak F; Steigemann W; Petsko GA; Ponzi DR; Frauenfelder H
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4967-71. PubMed ID: 6956905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description.
    Moritsugu K; Smith JC
    J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam.
    Paulsen MD; Ornstein RL
    Proteins; 1991; 11(3):184-204. PubMed ID: 1749772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.