These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23421141)

  • 1. Vacancy complexes in carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7796-806. PubMed ID: 23421141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect complexes in carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7021-9. PubMed ID: 23035428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7030-6. PubMed ID: 23035429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7807-14. PubMed ID: 23421142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical investigation of defects in a boron nitride monolayer.
    Azevedo S; Kaschny JR; de Castilho CM; Mota Fde B
    Nanotechnology; 2007 Dec; 18(49):495707. PubMed ID: 20442488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.
    Igumbor E; Olaniyan O; Mapasha RE; Danga HT; Omotoso E; Meyer WE
    J Phys Condens Matter; 2018 May; 30(18):185702. PubMed ID: 29557790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling.
    Ahmadi MT; Razmdideh A; Rahimian Koloor SS; Petrů M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density of states of helically symmetric boron carbon nitride nanotubes.
    Carvalho AC; Bezerra CG; Lawlor JA; Ferreira MS
    J Phys Condens Matter; 2014 Jan; 26(1):015303. PubMed ID: 24275247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of the divacancies in boron nitride nanotubes: properties and surface reactivity toward various adsorbates.
    Zhao JX; Ding YH
    J Chem Phys; 2009 Jul; 131(1):014706. PubMed ID: 19586116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Boron-Carbon-Nitrogen Heterostructures by Collision Fusion of Carbon Nanotubes and Boron Nitride Nanotubes.
    Zhang C; Xu J; Song H; Ren K; Yu ZG; Zhang YW
    Molecules; 2023 May; 28(11):. PubMed ID: 37298810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation-driven electrical transport of individual boron nitride nanotubes.
    Bai X; Golberg D; Bando Y; Zhi C; Tang C; Mitome M; Kurashima K
    Nano Lett; 2007 Mar; 7(3):632-7. PubMed ID: 17288485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable boron nitride diamondoids as nanoscale materials.
    Fyta M
    Nanotechnology; 2014 Sep; 25(36):365601. PubMed ID: 25121522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
    Kang SH; Kim G; Kwon YK
    Phys Chem Chem Phys; 2015 Feb; 17(7):5072-7. PubMed ID: 25597425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study.
    Li FQ; Zhang Y; Zhang SL
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band gap opening and semiconductor-metal phase transition in (n, n) single-walled carbon nanotubes with distinctive boron-nitrogen line defect.
    Qiu M; Xie Y; Gao X; Li J; Deng Y; Guan D; Ma L; Yuan C
    Phys Chem Chem Phys; 2016 Feb; 18(6):4643-51. PubMed ID: 26794602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.
    Roosta S; Hashemianzadeh SM; Ketabi S
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():98-103. PubMed ID: 27287103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient carbon dioxide capture by boron-rich boron nitride nanotube.
    Choi H; Park YC; Kim YH; Lee YS
    J Am Chem Soc; 2011 Feb; 133(7):2084-7. PubMed ID: 21287992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.