These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23421141)

  • 21. Disorder and segregation in B-C-N graphene-type layers and nanotubes: tuning the band gap.
    da Rocha Martins J; Chacham H
    ACS Nano; 2011 Jan; 5(1):385-93. PubMed ID: 21186786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic and optical properties of pristine and boron-nitrogen doped graphyne nanotubes.
    Bhattacharya B; Singh NB; Mondal R; Sarkar U
    Phys Chem Chem Phys; 2015 Jul; 17(29):19325-41. PubMed ID: 26138807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.
    Nithya JS; Pandurangan A
    J Nanosci Nanotechnol; 2012 May; 12(5):3831-7. PubMed ID: 22852313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis.
    Kang HS
    J Phys Chem B; 2006 Mar; 110(10):4621-8. PubMed ID: 16526693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new class of boron nanotube.
    Wang J; Liu Y; Li YC
    Chemphyschem; 2009 Dec; 10(17):3119-21. PubMed ID: 19810082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defects-enhanced dissociation of H2 on boron nitride nanotubes.
    Wu X; Yang J; Hou JG; Zhu Q
    J Chem Phys; 2006 Feb; 124(5):054706. PubMed ID: 16468900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Divacancies in diamond: a stepwise formation mechanism.
    Slepetz B; Kertesz M
    Phys Chem Chem Phys; 2014 Jan; 16(4):1515-21. PubMed ID: 24305744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) due to the impurity of a single carbon atom and temperature changes.
    Yadollahi AM; Niazian MR; Khodadadi A
    J Mol Graph Model; 2023 Jul; 122():108499. PubMed ID: 37116335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First principles study of Si-doped BC2N nanotubes.
    Rupp CJ; Rossato J; Baierle RJ
    J Chem Phys; 2009 Mar; 130(11):114710. PubMed ID: 19317558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ferromagnetism induced by intrinsic defects and boron substitution in single-wall SiC nanotubes.
    Zhang Y; Qin H; Cao E; Gao F; Liu H; Hu J
    J Phys Chem A; 2011 Sep; 115(35):9987-92. PubMed ID: 21800870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the electronic and geometric structures of armchair GeC nanotubes: a hybrid density functional study.
    Rathi SJ; Ray AK
    Nanotechnology; 2008 Aug; 19(33):335706. PubMed ID: 21730632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of the magnetic homonuclear bonds boron nitride nanosheets using DFT methods.
    Anota EC; Hernández AB; Morales AE; Castro M
    J Mol Graph Model; 2017 Jun; 74():135-142. PubMed ID: 28414977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potentials of boron-doped (nitrogen deficient) and nitrogen-doped (boron deficient) BNNT photocatalysts for decontamination of pollutants from water bodies.
    Itas YS; Isah KA; Nuhu AH; Razali R; Tata S; K A N; Idris AM; Ullah MH; Khandaker MU
    RSC Adv; 2023 Aug; 13(34):23659-23668. PubMed ID: 37564254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, optical properties and defects in nitride (III-V) nanoscale cage clusters.
    Shevlin SA; Guo ZX; van Dam HJ; Sherwood P; A Catlow CR; Sokol AA; Woodley SM
    Phys Chem Chem Phys; 2008 Apr; 10(14):1944-59. PubMed ID: 18368187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.