These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells. Leem JW; Yu JS Opt Express; 2012 May; 20(10):A431-40. PubMed ID: 22712092 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications. Leem JW; Song YM; Yu JS Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915 [TBL] [Abstract][Full Text] [Related]
5. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. Leem JW; Song YM; Yu JS Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259 [TBL] [Abstract][Full Text] [Related]
6. Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties. Kim BS; Ju WK; Lee MW; Lee C; Lee SG; Beom-Hoan O J Nanosci Nanotechnol; 2013 May; 13(5):3622-6. PubMed ID: 23858915 [TBL] [Abstract][Full Text] [Related]
7. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection. Wang HP; Lai KY; Lin YR; Lin CA; He JH Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420 [TBL] [Abstract][Full Text] [Related]
8. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings. Ko YH; Yu JS Opt Express; 2011 Jan; 19(1):297-305. PubMed ID: 21263569 [TBL] [Abstract][Full Text] [Related]
9. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications. Leem JW; Song YM; Yu JS Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215 [TBL] [Abstract][Full Text] [Related]
10. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink. Yeo CI; Song YM; Jang SJ; Lee YT Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253 [TBL] [Abstract][Full Text] [Related]
11. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles. Kim JB; Yeo CI; Lee YH; Ravindran S; Lee YT Nanoscale Res Lett; 2014 Feb; 9(1):54. PubMed ID: 24484636 [TBL] [Abstract][Full Text] [Related]
12. Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties. Leem JW; Song YM; Yu JS Nanotechnology; 2011 Dec; 22(48):485304. PubMed ID: 22071365 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and optical property of vertically-aligned ZnO/Si double nanostructures. Ko YH; Chung KS; Yu JS J Nanosci Nanotechnol; 2012 Jun; 12(6):4570-6. PubMed ID: 22905502 [TBL] [Abstract][Full Text] [Related]
14. Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers. Jang SJ; Song YM; Yu JS; Yeo CI; Lee YT Opt Lett; 2011 Jan; 36(2):253-5. PubMed ID: 21263517 [TBL] [Abstract][Full Text] [Related]
15. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D; Bae J; Hong S; Yang H; Kim YB Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196 [TBL] [Abstract][Full Text] [Related]
16. Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting. Wang HP; Tsai KT; Lai KY; Wei TC; Wang YL; He JH Opt Express; 2012 Jan; 20(1):A94-103. PubMed ID: 22379674 [TBL] [Abstract][Full Text] [Related]
17. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching. Lee SK; Tan CL; Lee YT Opt Lett; 2017 Feb; 42(3):431-434. PubMed ID: 28146494 [TBL] [Abstract][Full Text] [Related]
19. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Leem JW; Yeh Y; Yu JS Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164 [TBL] [Abstract][Full Text] [Related]
20. Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications. Yeo C; Kim JB; Song YM; Lee YT Nanoscale Res Lett; 2013 Apr; 8(1):159. PubMed ID: 23566597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]