BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2342117)

  • 1. Experimental spinal cord injury: qualitative and quantitative histopathologic evaluation.
    Finkelstein SD; Gillespie JA; Markowitz RS; Johnson DD; Black P
    J Neurotrauma; 1990; 7(1):29-40. PubMed ID: 2342117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord.
    Noble LJ; Wrathall JR
    Exp Neurol; 1985 Apr; 88(1):135-49. PubMed ID: 3979507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naloxone and experimental spinal cord injury: effect of varying dose and intensity of injury.
    Black P; Markowitz RS; Gillespie JA; Finkelstein SD
    J Neurotrauma; 1991; 8(2):157-71. PubMed ID: 1870138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.
    Zeman RJ; Wen X; Ouyang N; Rocchio R; Shih L; Alfieri A; Moorthy C; Etlinger JD
    Neurosurgery; 2008 Nov; 63(5):981-7; discussion 987-8. PubMed ID: 19005390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models of spinal cord injury: Part 3. Dynamic load technique.
    Black P; Markowitz RS; Damjanov I; Finkelstein SD; Kushner H; Gillespie J; Feldman M
    Neurosurgery; 1988 Jan; 22(1 Pt 1):51-60. PubMed ID: 3344087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat.
    Noble LJ; Wrathall JR
    Exp Neurol; 1989 Jan; 103(1):34-40. PubMed ID: 2912748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postmortem magnetic resonance imaging of experimental spinal cord injury: magnetic resonance findings versus in vivo functional deficit.
    Hackney DB; Finkelstein SD; Hand CM; Markowitz RS; Black P
    Neurosurgery; 1994 Dec; 35(6):1104-11. PubMed ID: 7885555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.
    Wrathall JR; Teng YD; Marriott R
    Exp Neurol; 1997 Jun; 145(2 Pt 1):565-73. PubMed ID: 9217092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat.
    Lee TT; Green BA; Dietrich WD; Yezierski RP
    J Neurotrauma; 1999 May; 16(5):347-56. PubMed ID: 10369555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naloxone and experimental spinal cord injury: Part 1. High dose administration in a static load compression model.
    Black P; Markowitz RS; Keller S; Wachs K; Gillespie J; Finkelstein SD
    Neurosurgery; 1986 Dec; 19(6):905-8. PubMed ID: 3808239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury.
    Popovich PG; Horner PJ; Mullin BB; Stokes BT
    Exp Neurol; 1996 Dec; 142(2):258-75. PubMed ID: 8934558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Local spinal cord glucose utilization and extracellular potassium activity changes after spinal cord injury in rats].
    Murai H; Itoh C; Wagai N; Nakamura T; Yamaura A; Makino H
    No To Shinkei; 1991 Apr; 43(4):337-42. PubMed ID: 1888573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging.
    Narayana PA; Grill RJ; Chacko T; Vang R
    J Neurosci Res; 2004 Dec; 78(5):749-59. PubMed ID: 15499591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental spinal cord injury: effect of a calcium channel antagonist (nicardipine).
    Black P; Markowitz RS; Finkelstein SD; McMonagle-Strucko K; Gillespie JA
    Neurosurgery; 1988 Jan; 22(1 Pt 1):61-6. PubMed ID: 3344088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury.
    Jakeman LB; Wei P; Guan Z; Stokes BT
    Exp Neurol; 1998 Nov; 154(1):170-84. PubMed ID: 9875278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naloxone and experimental spinal cord injury: Part 2. Megadose treatment in a dynamic load injury model.
    Black P; Markowitz RS; Keller S; Wachs K; Gillespie J; Finkelstein SD
    Neurosurgery; 1986 Dec; 19(6):909-13. PubMed ID: 3808240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats.
    Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S
    J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempol, a nitroxide antioxidant, improves locomotor and histological outcomes after spinal cord contusion in rats.
    Hillard VH; Peng H; Zhang Y; Das K; Murali R; Etlinger JD; Zeman RJ
    J Neurotrauma; 2004 Oct; 21(10):1405-14. PubMed ID: 15672631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.