These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23421188)

  • 1. Diffusion, swelling and electrical properties of polyisoprene/multiwall carbon nanotube composites in organic solvent vapours.
    Knite M; Sakale G; Teteris V
    J Nanosci Nanotechnol; 2012 Oct; 12(10):8123-8. PubMed ID: 23421188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastomer-carbon nanotube composites as prospective multifunctional sensing materials.
    Knite M; Ozols K; Zavickis J; Tupureina V; Klemenoks I; Orlovs R
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3587-92. PubMed ID: 19504886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyisoprene-multi wall carbon nanotube composite structure for flexible pressure sensor application.
    Knite M; Zavickis J; Teteris V; Linarts A
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8677-81. PubMed ID: 22400242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets.
    Perets Y; Aleksandrovych L; Melnychenko M; Lazarenko O; Vovchenko L; Matzui L
    Nanoscale Res Lett; 2017 Dec; 12(1):406. PubMed ID: 28618717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive Response of Carbon Nanotube-Based Composites Subjected to Water Aging.
    Guadagno L; Vertuccio L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube-DNA films.
    Ali SB; Oshido AB; Houlton A; Horrocks BR
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34624883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks.
    Thostenson ET; Chou TW
    Nanotechnology; 2008 May; 19(21):215713. PubMed ID: 21730592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Strain Sensing Performance of Natural Rubber Nanocomposites.
    Natarajan TS; Eshwaran SB; Stöckelhuber KW; Wießner S; Pötschke P; Heinrich G; Das A
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4860-4872. PubMed ID: 28094912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform.
    Kennedy ZC; Christ JF; Evans KA; Arey BW; Sweet LE; Warner MG; Erikson RL; Barrett CA
    Nanoscale; 2017 May; 9(17):5458-5466. PubMed ID: 28422253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical properties of silica-coated multiwall carbon nanotubes-poly(methyl methacrylate) composites.
    Olek M; Kempa K; Jurga S; Giersig M
    Langmuir; 2005 Mar; 21(7):3146-52. PubMed ID: 15779997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent conductive multiwall carbon nanotubes-polymer composite for electrode applications.
    Nayak S; Behura SK; Bhattacharjee S; Singh BP; Jani O; Mukhopadhyay I
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2816-22. PubMed ID: 24734695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading.
    Ku-Herrera JJ; Pacheco-Salazar OF; Ríos-Soberanis CR; Domínguez-Rodríguez G; Avilés F
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on Temperature-Dependent Electrical Conductivity of Carbon Nanotube/Epoxy Composites for Sustainable Energy Applications.
    Njuguna MK; Galpaya D; Yan C; Colwell JM; Will G; Hu N; Yarlagadda P; Bell JM
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6957-64. PubMed ID: 26716268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube-polymer composites.
    Xu S; Rezvanian O; Peters K; Zikry MA
    Nanotechnology; 2013 Apr; 24(15):155706. PubMed ID: 23519025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modelling of heterogeneous fillers in polymer composites: the case of polyisoprene and carbon black.
    Giunta G; Chiricotto M; Jackson I; Karimi-Varzaneh HA; Carbone P
    J Phys Condens Matter; 2021 Apr; 33(19):. PubMed ID: 33556928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical conductivities of composites with aligned carbon nanotubes.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2518-24. PubMed ID: 19437996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolating conductive networks in multiwall carbon nanotube-filled polymeric nanocomposites: towards scalable high-conductivity applications of disordered systems.
    Wang AJ; Liao KS; Maharjan S; Zhu Z; McElhenny B; Bao J; Curran SA
    Nanoscale; 2019 Apr; 11(17):8565-8578. PubMed ID: 30990496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binderless carbon nanotube/carbon fibre composites for electrochemical micropower sources.
    Bordjiba T; Mohamedi M; Dao LH
    Nanotechnology; 2007 Jan; 18(3):035202. PubMed ID: 19636112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.
    Bârsan OA; Hoffmann GG; van der Ven LG; de With G
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19701-8. PubMed ID: 27404764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.