These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23421225)

  • 1. The effect of oxidation on properties of graphene and its polycaprolactone nanocomposites.
    Dao TD; Oh KM; Choi JT; Lee HI; Jeong HM; Kim YS; Park SJ; Kim BK
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8420-30. PubMed ID: 23421225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of graphene/poly(diphenylamine) composites.
    Lingappan N; Jeong YT; Gal YS; Lim KT
    J Nanosci Nanotechnol; 2013 May; 13(5):3723-7. PubMed ID: 23858936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups.
    Liu Z; Duan X; Qian G; Zhou X; Yuan W
    Nanotechnology; 2013 Feb; 24(4):045609. PubMed ID: 23299661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets.
    Chen D; Zhu H; Liu T
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3702-8. PubMed ID: 21067202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization.
    Song SH; Park KH; Kim BH; Choi YW; Jun GH; Lee DJ; Kong BS; Paik KW; Jeon S
    Adv Mater; 2013 Feb; 25(5):732-7. PubMed ID: 23161437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of graphene/poly(p-phenylenediamine) hybrids.
    Lingappan N; Cho B; Jang M; Choi BC; Gal YS; Lim KT
    J Nanosci Nanotechnol; 2013 May; 13(5):3719-22. PubMed ID: 23858935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite.
    Hsiao MC; Liao SH; Lin YF; Wang CA; Pu NW; Tsai HM; Ma CC
    Nanoscale; 2011 Apr; 3(4):1516-22. PubMed ID: 21431177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical conductivity and optical properties of polyaniline intercalated graphite oxide nanocomposites.
    Dutta K; De SK
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2459-65. PubMed ID: 17663265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.
    Zhang S; Shao Y; Liao H; Engelhard MH; Yin G; Lin Y
    ACS Nano; 2011 Mar; 5(3):1785-91. PubMed ID: 21361350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient synthesis of graphene nanocomposites.
    Tang H; Ehlert GJ; Lin Y; Sodano HA
    Nano Lett; 2012 Jan; 12(1):84-90. PubMed ID: 22103581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid.
    Mahmoudian S; Wahit MU; Imran M; Ismail AF; Balakrishnan H
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5233-9. PubMed ID: 22966551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods.
    He FA; Fan JT; Song F; Zhang LM; Lai-Wa Chan H
    Nanoscale; 2011 Mar; 3(3):1182-8. PubMed ID: 21258693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance nanopapers based on benzenesulfonic functionalized graphenes.
    Huang W; Ouyang X; Lee LJ
    ACS Nano; 2012 Nov; 6(11):10178-85. PubMed ID: 23098084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making graphene luminescent by oxygen plasma treatment.
    Gokus T; Nair RR; Bonetti A; Böhmler M; Lombardo A; Novoselov KS; Geim AK; Ferrari AC; Hartschuh A
    ACS Nano; 2009 Dec; 3(12):3963-8. PubMed ID: 19925014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.
    Wang P; Zhai Y; Wang D; Dong S
    Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent grafting of poly(3-octylthiophene) at the edges of the graphene nanosheets.
    Lingappan N; Kim DH; Gal YS; Hong SS; Lim KT
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7439-43. PubMed ID: 24245270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of dispersible ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in a magnetic field.
    Genorio B; Peng Z; Lu W; Price Hoelscher BK; Novosel B; Tour JM
    ACS Nano; 2012 Nov; 6(11):10396-404. PubMed ID: 23116171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges.
    Grånäs E; Knudsen J; Schröder UA; Gerber T; Busse C; Arman MA; Schulte K; Andersen JN; Michely T
    ACS Nano; 2012 Nov; 6(11):9951-63. PubMed ID: 23039853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence.
    Yin M; Wu L; Li Z; Ren J; Qu X
    Nanoscale; 2012 Jan; 4(2):400-4. PubMed ID: 22159188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.