These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23421271)

  • 1. Assembly of molecular nanomagnets into nanogap electrodes by dielectrophoresis.
    Vaheb Y; Calvet LE; Dia N; Mallah T; Catala L
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8710-4. PubMed ID: 23421271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin films of Prussian blue: sequential assembly, patterning and electron transport properties at the nanometric scale.
    Cobo S; Molnár G; Carcenac F; Szilágyi PA; Salmon L; Vieu C; Bousseksou A
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5042-50. PubMed ID: 21125848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar nanogap electrodes by direct nanotransfer printing.
    Strobel S; Harrer S; Penso Blanco G; Scarpa G; Abstreiter G; Lugli P; Tornow M
    Small; 2009 Mar; 5(5):579-82. PubMed ID: 19235800
    [No Abstract]   [Full Text] [Related]  

  • 4. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes.
    Prins F; Barreiro A; Ruitenberg JW; Seldenthuis JS; Aliaga-Alcalde N; Vandersypen LM; van der Zant HS
    Nano Lett; 2011 Nov; 11(11):4607-11. PubMed ID: 22011188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode.
    Li NB; Park JH; Park K; Kwon SJ; Shin H; Kwak J
    Biosens Bioelectron; 2008 May; 23(10):1519-26. PubMed ID: 18289843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel fabrication of nanogap electrodes.
    Johnston DE; Strachan DR; Johnson AT
    Nano Lett; 2007 Sep; 7(9):2774-7. PubMed ID: 17696560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic assembly of single gold nanoparticle into nanogap electrodes.
    Yoon SH; Kumar S; Kim GH; Choi YS; Kim TW; Khondaker SI
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3427-33. PubMed ID: 19051890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis.
    Puigmartí-Luis J; Stadler J; Schaffhauser D; del Pino AP; Burg BR; Dittrich PS
    Nanoscale; 2011 Mar; 3(3):937-40. PubMed ID: 21225055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
    Joung D; Chunder A; Zhai L; Khondaker SI
    Nanotechnology; 2010 Apr; 21(16):165202. PubMed ID: 20348593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-aspect-ratio nanogap electrodes for averaging molecular conductance measurements.
    Luber SM; Zhang F; Lingitz S; Hansen AG; Scheliga F; Thorn-Csányi E; Bichler M; Tornow M
    Small; 2007 Feb; 3(2):285-9. PubMed ID: 17262757
    [No Abstract]   [Full Text] [Related]  

  • 11. Polymer-protected sub-2-nm-nanogap fabrication for biological sensing in near-physiological conditions.
    Zhang H; Barsotti RJ; Wong CL; Xue X; Liu X; Stellacci F; Thong JT
    Small; 2009 Dec; 5(24):2797-801. PubMed ID: 19882685
    [No Abstract]   [Full Text] [Related]  

  • 12. Assembly of metal nanoparticles into nanogaps.
    Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F
    Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching in nanogap systems on SiO2 substrates.
    Yao J; Zhong L; Zhang Z; He T; Jin Z; Wheeler PJ; Natelson D; Tour JM
    Small; 2009 Dec; 5(24):2910-5. PubMed ID: 19787676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical readouts of single and few molecule systems in metal-molecule-metal device structures.
    Mahapatro AK; Janes DB
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2134-8. PubMed ID: 17655006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled nanogaps for molecular electronics.
    Tang Q; Tong Y; Jain T; Hassenkam T; Wan Q; Moth-Poulsen K; Bjørnholm T
    Nanotechnology; 2009 Jun; 20(24):245205. PubMed ID: 19468160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithographically defined porous carbon electrodes.
    Burckel DB; Washburn CM; Raub AK; Brueck SR; Wheeler DR; Brozik SM; Polsky R
    Small; 2009 Dec; 5(24):2792-6. PubMed ID: 19823996
    [No Abstract]   [Full Text] [Related]  

  • 17. Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode.
    Manna S; Ashok VD; De SK
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3539-43. PubMed ID: 21121615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electroluminescence from nanoscale silicon p+ -n junctions made with an anodic aluminum oxide pattern.
    Hong T; Chen T; Ran GZ; Wen J; Li YZ; Dai T; Qin GG
    Nanotechnology; 2010 Jan; 21(2):025301. PubMed ID: 19955614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of mesoporous tin oxide and its application as a LNG sensor.
    Kim NH; Kim GJ
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3914-6. PubMed ID: 18047087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode.
    Ling S; Yuan R; Chai Y; Zhang T
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):407-14. PubMed ID: 18923847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.