These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23421496)

  • 21. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finding the epistasis needles in the genome-wide haystack.
    Ritchie MD
    Methods Mol Biol; 2015; 1253():19-33. PubMed ID: 25403525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging putative enhancer-promoter interactions to investigate two-way epistasis in Type 2 Diabetes GWAS.
    Manduchi E; Chesi A; Hall MA; Grant SFA; Moore JH
    Pac Symp Biocomput; 2018; 23():548-558. PubMed ID: 29218913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FaST-LMM for Two-Way Epistasis Tests on High-Performance Clusters.
    Martínez H; Barrachina S; Castillo M; Quintana-OrtÍ ES; Rambla de Argila J; Farré X; Navarro A
    J Comput Biol; 2018 Aug; 25(8):862-870. PubMed ID: 30020811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS.
    Greene CS; Sinnott-Armstrong NA; Himmelstein DS; Park PJ; Moore JH; Harris BT
    Bioinformatics; 2010 Mar; 26(5):694-5. PubMed ID: 20081222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tools for efficient epistasis detection in genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Source Code Biol Med; 2011 Jan; 6(1):1. PubMed ID: 21205316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach.
    Li J; Horstman B; Chen Y
    Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Region-based interaction detection in genome-wide case-control studies.
    Zhang S; Jiang W; Ma RC; Yu W
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):133. PubMed ID: 31888606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies.
    Gyenesei A; Moody J; Laiho A; Semple CA; Haley CS; Wei WH
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W628-32. PubMed ID: 22689639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid framework for genome wide epistasis discovery.
    Tan Z; Zhang Z; Liu J; Kwoh CK; Ong SH; Teo YY; Khor CC; Tai ES; Aung T; Vithana E; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6479-82. PubMed ID: 22255822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TEAM: efficient two-locus epistasis tests in human genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chi8: a GPU program for detecting significant interacting SNPs with the Chi-square 8-df test.
    Al-jouie A; Esfandiari M; Ramakrishnan S; Roshan U
    BMC Res Notes; 2015 Sep; 8():436. PubMed ID: 26369336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comment on two-locus epistatic interaction models for genome-wide association studies.
    Sohn KA; Wee K
    J Bioinform Comput Biol; 2015 Dec; 13(6):1571004. PubMed ID: 26260855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post genome-wide association analysis: dissecting computational pathway/network-based approaches.
    Chimusa ER; Dalvie S; Dandara C; Wonkam A; Mazandu GK
    Brief Bioinform; 2019 Mar; 20(2):690-700. PubMed ID: 29701762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems.
    González-Domínguez J; Wienbrandt L; Kässens JC; Ellinghaus D; Schimmler M; Schmidt B
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):982-94. PubMed ID: 26451813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic interactions effects for cancer disease identification using computational models: a review.
    Manavalan R; Priya S
    Med Biol Eng Comput; 2021 Apr; 59(4):733-758. PubMed ID: 33839998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GLIDE: GPU-based linear regression for detection of epistasis.
    Kam-Thong T; Azencott CA; Cayton L; Pütz B; Altmann A; Karbalai N; Sämann PG; Schölkopf B; Müller-Myhsok B; Borgwardt KM
    Hum Hered; 2012; 73(4):220-36. PubMed ID: 22965145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies.
    Piriyapongsa J; Ngamphiw C; Intarapanich A; Kulawonganunchai S; Assawamakin A; Bootchai C; Shaw PJ; Tongsima S
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S2. PubMed ID: 23281813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.