BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1329 related articles for article (PubMed ID: 23421609)

  • 21. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.
    Matson TD; Barta K; Iretskii AV; Ford PC
    J Am Chem Soc; 2011 Sep; 133(35):14090-7. PubMed ID: 21806029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogenolysis of cellulose over Cu-based catalysts-analysis of the reaction network.
    Tajvidi K; Hausoul PJ; Palkovits R
    ChemSusChem; 2014 May; 7(5):1311-7. PubMed ID: 24596082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals.
    Deng W; Zhang Q; Wang Y
    Dalton Trans; 2012 Sep; 41(33):9817-31. PubMed ID: 22653050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts.
    Lopes AM; Bogel-Łukasik R
    ChemSusChem; 2015 Mar; 8(6):947-65. PubMed ID: 25703380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules.
    Huang YB; Chen MY; Yan L; Guo QX; Fu Y
    ChemSusChem; 2014 Apr; 7(4):1068-72. PubMed ID: 24574062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SO₃H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose.
    Liu Y; Xiao W; Xia S; Ma P
    Carbohydr Polym; 2013 Jan; 92(1):218-22. PubMed ID: 23218286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts.
    Yang L; Yan X; Wang Q; Wang Q; Xia H
    Carbohydr Res; 2015 Mar; 404():87-92. PubMed ID: 25665784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts.
    Ji N; Zhang T; Zheng M; Wang A; Wang H; Wang X; Chen JG
    Angew Chem Int Ed Engl; 2008; 47(44):8510-3. PubMed ID: 18785670
    [No Abstract]   [Full Text] [Related]  

  • 32. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.
    Wu Y; Gu F; Xu G; Zhong Z; Su F
    Bioresour Technol; 2013 Jun; 137():311-7. PubMed ID: 23591118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.
    Wu CT; Qu J; Elliott J; Yu KM; Tsang SC
    Phys Chem Chem Phys; 2013 Jun; 15(23):9043-50. PubMed ID: 23661262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
    Zhang B; Meng Q; Liu H; Han B
    Acc Chem Res; 2023 Dec; 56(24):3558-3571. PubMed ID: 38029298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-based woody biorefinery.
    Amidon TE; Liu S
    Biotechnol Adv; 2009; 27(5):542-50. PubMed ID: 19393733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-pot conversions of lignocellulosic and algal biomass into liquid fuels.
    De S; Dutta S; Saha B
    ChemSusChem; 2012 Sep; 5(9):1826-33. PubMed ID: 22639414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.
    Wang Y; Deng W; Wang B; Zhang Q; Wan X; Tang Z; Wang Y; Zhu C; Cao Z; Wang G; Wan H
    Nat Commun; 2013; 4():2141. PubMed ID: 23846730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 67.