These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23422305)
21. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Zhou W; Wang Z; Xu J; Ma L J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764 [TBL] [Abstract][Full Text] [Related]
22. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Ji MK; Yun HS; Park S; Lee H; Park YT; Bae S; Ham J; Choi J Bioresour Technol; 2015 Mar; 179():624-628. PubMed ID: 25553643 [TBL] [Abstract][Full Text] [Related]
23. Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production. Song M; Pei H; Hu W; Zhang S; Ma G; Han L; Ji Y Bioresour Technol; 2014 Jun; 162():129-35. PubMed ID: 24747391 [TBL] [Abstract][Full Text] [Related]
24. Seasonal isolation of microalgae from municipal wastewater for remediation and biofuel applications. Park KC; Whitney CG; Kozera C; O'Leary SJ; McGinn PJ J Appl Microbiol; 2015 Jul; 119(1):76-87. PubMed ID: 25845886 [TBL] [Abstract][Full Text] [Related]
25. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592 [TBL] [Abstract][Full Text] [Related]
26. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production. Drira N; Piras A; Rosa A; Porcedda S; Dhaouadi H Bioresour Technol; 2016 Apr; 206():239-244. PubMed ID: 26866759 [TBL] [Abstract][Full Text] [Related]
27. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Arora N; Patel A; Sartaj K; Pruthi PA; Pruthi V Environ Sci Pollut Res Int; 2016 Oct; 23(20):20997-21007. PubMed ID: 27488714 [TBL] [Abstract][Full Text] [Related]
28. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Aketo T; Hoshikawa Y; Nojima D; Yabu Y; Maeda Y; Yoshino T; Takano H; Tanaka T J Biosci Bioeng; 2020 May; 129(5):565-572. PubMed ID: 31974048 [TBL] [Abstract][Full Text] [Related]
29. Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater. Chen CY; Chang YH J Biosci Bioeng; 2018 Jun; 125(6):710-716. PubMed ID: 29426801 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga. Frampton DM; Gurney RH; Dunstan GA; Clementson LA; Toifl MC; Pollard CB; Burn S; Jameson ID; Blackburn SI Bioresour Technol; 2013 Feb; 130():261-8. PubMed ID: 23313670 [TBL] [Abstract][Full Text] [Related]
31. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Samorì G; Samorì C; Guerrini F; Pistocchi R Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134 [TBL] [Abstract][Full Text] [Related]
32. Bioprospecting of indigenous marine microalgae with ammonium tolerance from aquaculture ponds for microalgae cultivation with ammonium-rich wastewaters. Katayama T; Nagao N; Kasan NA; Khatoon H; Rahman NA; Takahashi K; Furuya K; Yamada Y; Wahid MEA; Jusoh M J Biotechnol; 2020 Nov; 323():113-120. PubMed ID: 32768414 [TBL] [Abstract][Full Text] [Related]
33. Biodiesel production from indigenous microalgae grown in wastewater. Komolafe O; Velasquez Orta SB; Monje-Ramirez I; Yáñez Noguez I; Harvey AP; Orta Ledesma MT Bioresour Technol; 2014 Feb; 154():297-304. PubMed ID: 24412481 [TBL] [Abstract][Full Text] [Related]
34. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. Wrede D; Taha M; Miranda AF; Kadali K; Stevenson T; Ball AS; Mouradov A PLoS One; 2014; 9(11):e113497. PubMed ID: 25419574 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Ma Y; Wang Z; Yu C; Yin Y; Zhou G Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933 [TBL] [Abstract][Full Text] [Related]
36. Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Li G; Zhang J; Li H; Hu R; Yao X; Liu Y; Zhou Y; Lyu T Chemosphere; 2021 Jun; 273():128578. PubMed ID: 33066970 [TBL] [Abstract][Full Text] [Related]
37. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718 [TBL] [Abstract][Full Text] [Related]
38. Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Zhou W; Hu B; Li Y; Min M; Mohr M; Du Z; Chen P; Ruan R Appl Biochem Biotechnol; 2012 Sep; 168(2):348-63. PubMed ID: 22798164 [TBL] [Abstract][Full Text] [Related]
39. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle. Praveen P; Loh KC Appl Microbiol Biotechnol; 2019 Apr; 103(8):3571-3580. PubMed ID: 30809712 [TBL] [Abstract][Full Text] [Related]
40. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Shen QH; Jiang JW; Chen LP; Cheng LH; Xu XH; Chen HL Bioresour Technol; 2015 Aug; 190():257-63. PubMed ID: 25958150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]