These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23422431)

  • 1. Using analyses of amino Acid coevolution to understand protein structure and function.
    Ashenberg O; Laub MT
    Methods Enzymol; 2013; 523():191-212. PubMed ID: 23422431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated mutation analyses on very large sequence families.
    Oliveira L; Paiva AC; Vriend G
    Chembiochem; 2002 Oct; 3(10):1010-7. PubMed ID: 12362367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of residue pairing to beta-sheet formation: conservation and covariation of amino acid residue pairs on antiparallel beta-strands.
    Mandel-Gutfreund Y; Zaremba SM; Gregoret LM
    J Mol Biol; 2001 Feb; 305(5):1145-59. PubMed ID: 11162120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the residue-residue coevolution network and the functionally important residues in proteins.
    Lee BC; Park K; Kim D
    Proteins; 2008 Aug; 72(3):863-72. PubMed ID: 18275083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionarily conserved networks of residues mediate allosteric communication in proteins.
    Süel GM; Lockless SW; Wall MA; Ranganathan R
    Nat Struct Biol; 2003 Jan; 10(1):59-69. PubMed ID: 12483203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences.
    Fukami-Kobayashi K; Schreiber DR; Benner SA
    J Mol Biol; 2002 Jun; 319(3):729-43. PubMed ID: 12054866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis.
    Choi SS; Li W; Lahn BT
    Nat Genet; 2005 Dec; 37(12):1367-71. PubMed ID: 16282975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions.
    Gloor GB; Martin LC; Wahl LM; Dunn SD
    Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the false positive rate in the non-parametric analysis of molecular coevolution.
    Codoñer FM; O'Dea S; Fares MA
    BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
    Fares MA; Travers SA
    Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein secondary structure content using amino acid composition and evolutionary information.
    Lee S; Lee BC; Kim D
    Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved residue clustering and protein structure prediction.
    Schueler-Furman O; Baker D
    Proteins; 2003 Aug; 52(2):225-35. PubMed ID: 12833546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methods to measure residues coevolution in proteins.
    Gao H; Dou Y; Yang J; Wang J
    BMC Bioinformatics; 2011 May; 12():206. PubMed ID: 21612664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments.
    Chang MS; Benner SA
    J Mol Biol; 2004 Aug; 341(2):617-31. PubMed ID: 15276848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.