These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23422441)

  • 21. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.
    Modi V; Lama D; Sankararamakrishnan R
    J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic characterization of helical secondary structures in 2:1 and 1:2 alpha/beta-peptides.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2009 Mar; 131(8):2917-24. PubMed ID: 19203269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides.
    Schmitt MA; Weisblum B; Gellman SH
    J Am Chem Soc; 2007 Jan; 129(2):417-28. PubMed ID: 17212422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extending foldamer design beyond α-helix mimicry: α/β-peptide inhibitors of vascular endothelial growth factor signaling.
    Haase HS; Peterson-Kaufman KJ; Lan Levengood SK; Checco JW; Murphy WL; Gellman SH
    J Am Chem Soc; 2012 May; 134(18):7652-5. PubMed ID: 22548447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-X(L).
    Lama D; Sankararamakrishnan R
    J Comput Aided Mol Des; 2011 May; 25(5):413-26. PubMed ID: 21523491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein secondary structure mimetics: crystal conformations of α/γ4-hybrid peptide12-helices with proteinogenic side chains and their analogy with α- and β-peptide helices.
    Jadhav SV; Bandyopadhyay A; Gopi HN
    Org Biomol Chem; 2013 Jan; 11(3):509-14. PubMed ID: 23212647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chimeric (alpha/beta + alpha)-peptide ligands for the BH3-recognition cleft of Bcl-XL: critical role of the molecular scaffold in protein surface recognition.
    Sadowsky JD; Schmitt MA; Lee HS; Umezawa N; Wang S; Tomita Y; Gellman SH
    J Am Chem Soc; 2005 Aug; 127(34):11966-8. PubMed ID: 16117535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling backbone flexibility to achieve sequence diversity: the design of novel alpha-helical ligands for Bcl-xL.
    Fu X; Apgar JR; Keating AE
    J Mol Biol; 2007 Aug; 371(4):1099-117. PubMed ID: 17597151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design.
    Vasudev PG; Chatterjee S; Shamala N; Balaram P
    Acc Chem Res; 2009 Oct; 42(10):1628-39. PubMed ID: 19572698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploration of α/β/γ-peptidomimetics design for BH3 helical domains.
    Shin YH; Yang H
    Chem Commun (Camb); 2022 Jan; 58(7):945-948. PubMed ID: 34985060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unnatural helical peptidic foldamers as protein segment mimics.
    Sang P; Cai J
    Chem Soc Rev; 2023 Jul; 52(15):4843-4877. PubMed ID: 37401344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers.
    Violette A; Fournel S; Lamour K; Chaloin O; Frisch B; Briand JP; Monteil H; Guichard G
    Chem Biol; 2006 May; 13(5):531-8. PubMed ID: 16720274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bh3 induced conformational changes in Bcl-Xl revealed by crystal structure and comparative analysis.
    Rajan S; Choi M; Baek K; Yoon HS
    Proteins; 2015 Jul; 83(7):1262-72. PubMed ID: 25907960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. γ-AApeptides: Design, Structure, and Applications.
    Shi Y; Teng P; Sang P; She F; Wei L; Cai J
    Acc Chem Res; 2016 Mar; 49(3):428-41. PubMed ID: 26900964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chemical strategy to promote helical peptide-protein interactions involved in apoptosis.
    Liu D; Yang B; Cao R; Huang Z
    Bioorg Med Chem Lett; 2005 Oct; 15(20):4467-9. PubMed ID: 16137879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-guided rational design of α/β-peptide foldamers with high affinity for BCL-2 family prosurvival proteins.
    Smith BJ; Lee EF; Checco JW; Evangelista M; Gellman SH; Fairlie WD
    Chembiochem; 2013 Sep; 14(13):1564-72. PubMed ID: 23929624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of periodic γ-turns in α/β-hybrid peptides: DFT and NMR experimental evidence.
    Chandrasekhar S; Rao KV; Seenaiah M; Naresh P; Devi AS; Jagadeesh B
    Chem Asian J; 2014 Feb; 9(2):457-61. PubMed ID: 24203635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance study of protein-protein interactions involving apoptosis regulator Diva (Boo) and the BH3 domain of proapoptotic Bcl-2 members.
    Santiveri CM; Sborgi L; de Alba E
    J Mol Recognit; 2012 Dec; 25(12):665-73. PubMed ID: 23192964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta-peptides: twisting and turning.
    Gademann K; Hintermann T; Schreiber JV
    Curr Med Chem; 1999 Oct; 6(10):905-25. PubMed ID: 10519905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamical binding of hydrogen-bond surrogate derived Bak helices to antiapoptotic protein Bcl-xL.
    Bao J; Dong XY; Zhang JZ; Arora PS
    J Phys Chem B; 2009 Mar; 113(11):3565-71. PubMed ID: 19231824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.