These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 23422877)
1. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Eckert GP; Schiborr C; Hagl S; Abdel-Kader R; Müller WE; Rimbach G; Frank J Neurochem Int; 2013 Apr; 62(5):595-602. PubMed ID: 23422877 [TBL] [Abstract][Full Text] [Related]
2. The senescence-accelerated mouse-prone 8 is not a suitable model for the investigation of cardiac inflammation and oxidative stress and their modulation by dietary phytochemicals. Schiborr C; Schwamm D; Kocher A; Rimbach G; Eckert GP; Frank J Pharmacol Res; 2013 Aug; 74():113-20. PubMed ID: 23792082 [TBL] [Abstract][Full Text] [Related]
3. Cardiac oxidative stress and inflammation are similar in SAMP8 and SAMR1 mice and unaltered by curcumin and Ginkgo biloba extract intake. Schiborr C; Eckert GP; Weissenberger J; Müller WE; Schwamm D; Grune T; Rimbach G; Frank J Curr Pharm Biotechnol; 2010 Dec; 11(8):861-7. PubMed ID: 20874680 [TBL] [Abstract][Full Text] [Related]
4. Neurobiological and pharmacological validity of curcumin in ameliorating memory performance of senescence-accelerated mice. Sun CY; Qi SS; Zhou P; Cui HR; Chen SX; Dai KY; Tang ML Pharmacol Biochem Behav; 2013 Apr; 105():76-82. PubMed ID: 23402943 [TBL] [Abstract][Full Text] [Related]
5. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. Fernández-Gómez FJ; Muñoz-Delgado E; Montenegro MF; Campoy FJ; Vidal CJ; Jordán J J Neurosci Res; 2010 Jan; 88(1):155-66. PubMed ID: 19610099 [TBL] [Abstract][Full Text] [Related]
6. Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse. Castillo CA; Albasanz JL; León D; Jordán J; Pallàs M; Camins A; Martín M Exp Gerontol; 2009; 44(6-7):453-61. PubMed ID: 19410642 [TBL] [Abstract][Full Text] [Related]
8. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. Cristòfol R; Porquet D; Corpas R; Coto-Montes A; Serret J; Camins A; Pallàs M; Sanfeliu C J Pineal Res; 2012 Apr; 52(3):271-81. PubMed ID: 22085194 [TBL] [Abstract][Full Text] [Related]
9. Effect of growth hormone treatment on pancreatic inflammation, oxidative stress, and apoptosis related to aging in SAMP8 mice. Cuesta S; Kireev R; García C; Forman K; Vara E; Tresguerres JA Rejuvenation Res; 2011 Oct; 14(5):501-12. PubMed ID: 21958002 [TBL] [Abstract][Full Text] [Related]
10. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848 [TBL] [Abstract][Full Text] [Related]
11. The activity and mRNA expression of β-secretase, cathepsin D, and cathepsin B in the brain of senescence-accelerated mouse. Zhou JW; Cheng XR; Cheng JP; Zhou WX; Zhang YX J Alzheimers Dis; 2012; 28(2):471-80. PubMed ID: 22008266 [TBL] [Abstract][Full Text] [Related]
12. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. Caballero B; Vega-Naredo I; Sierra V; Huidobro-Fernández C; Soria-Valles C; De Gonzalo-Calvo D; Tolivia D; Gutierrez-Cuesta J; Pallas M; Camins A; Rodríguez-Colunga MJ; Coto-Montes A J Pineal Res; 2008 Oct; 45(3):302-11. PubMed ID: 18410310 [TBL] [Abstract][Full Text] [Related]
13. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Butterfield DA; Poon HF Exp Gerontol; 2005 Oct; 40(10):774-83. PubMed ID: 16026957 [TBL] [Abstract][Full Text] [Related]
14. Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism. Zhang Q; Ding H; Li W; Fan Z; Sun A; Luo J; Ke ZJ Brain Res; 2009 Apr; 1264():111-8. PubMed ID: 19232329 [TBL] [Abstract][Full Text] [Related]
15. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway. Palomera-Avalos V; Griñán-Ferré C; Puigoriol-Ilamola D; Camins A; Sanfeliu C; Canudas AM; Pallàs M Mol Neurobiol; 2017 Apr; 54(3):1661-1676. PubMed ID: 26873850 [TBL] [Abstract][Full Text] [Related]
16. Strain- and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice. Zhu L; Yu J; Shi Q; Lu W; Liu B; Xu S; Wang L; Han J; Wang X J Alzheimers Dis; 2011; 23(4):641-54. PubMed ID: 21178285 [TBL] [Abstract][Full Text] [Related]
18. [Studies on aging through analysis of the glucose metabolism related to the ATP--production of the senescence accelerated mouse (SAM)]. Shimano Y Hokkaido Igaku Zasshi; 1998 Nov; 73(6):557-69. PubMed ID: 10036614 [TBL] [Abstract][Full Text] [Related]
19. Reduced apurinic/apyrimidinic endonuclease 1 activity and increased DNA damage in mitochondria are related to enhanced apoptosis and inflammation in the brain of senescence- accelerated P8 mice (SAMP8). Torregrosa-Muñumer R; Gómez A; Vara E; Kireev R; Barja G; Tresguerres JA; Gredilla R Biogerontology; 2016 Apr; 17(2):325-35. PubMed ID: 26415859 [TBL] [Abstract][Full Text] [Related]
20. Age-related changes of anti-elastin antibodies in senescence-accelerated mice. Atanasova M; Konova E; Georgieva M; Dimitrova A; Coquand-Gandit M; Faury G; Baydanoff S Gerontology; 2010; 56(3):310-8. PubMed ID: 19752527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]