These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 23422931)
21. Nuclear magnetic shielding and quadrupole coupling tensors in liquid water: a combined molecular dynamics simulation and quantum chemical study. Pennanen TS; Vaara J; Lantto P; Sillanpää AJ; Laasonen K; Jokisaari J J Am Chem Soc; 2004 Sep; 126(35):11093-102. PubMed ID: 15339196 [TBL] [Abstract][Full Text] [Related]
22. Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses. Soleilhavoup A; Delaye JM; Angeli F; Caurant D; Charpentier T Magn Reson Chem; 2010 Dec; 48 Suppl 1():S159-70. PubMed ID: 20818801 [TBL] [Abstract][Full Text] [Related]
23. A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation. Moon S; Case DA J Comput Chem; 2006 May; 27(7):825-36. PubMed ID: 16541428 [TBL] [Abstract][Full Text] [Related]
24. Shielding and indirect spin-spin coupling tensors in the presence of a heavy atom: an experimental and theoretical study of bis(phenylethynyl)mercury. Gryff-Keller A; Kraska-Dziadecka A; Molchanov S; Wodyński A J Phys Chem A; 2012 Nov; 116(43):10615-20. PubMed ID: 23050748 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of (95)Mo Nuclear Shielding and Chemical Shift of [Mo6X14](2-) Clusters in the Liquid Phase. Nguyen TT; Jung J; Trivelli X; Trébosc J; Cordier S; Molard Y; Le Pollès L; Pickard CJ; Cuny J; Gautier R Inorg Chem; 2015 Aug; 54(16):7673-83. PubMed ID: 26208250 [TBL] [Abstract][Full Text] [Related]
26. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: a basis set and correlation study. Kjaer H; Nielsen MR; Pagola GI; Ferraro MB; Lazzeretti P; Sauer SP J Comput Chem; 2012 Sep; 33(23):1845-53. PubMed ID: 22618604 [TBL] [Abstract][Full Text] [Related]
27. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. He X; Wang B; Merz KM J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540 [TBL] [Abstract][Full Text] [Related]
28. Modeling the (13)C chemical-shift tensor in organic single crystals by quantum mechanical methods: finite basis set effects. Sefzik TH; Fidler JM; Iuliucci RJ; Facelli JC Magn Reson Chem; 2006 Mar; 44(3):390-400. PubMed ID: 16477672 [TBL] [Abstract][Full Text] [Related]
29. (13)C shielding tensors of crystalline amino acids and peptides: Theoretical predictions based on periodic structure models. Zheng A; Liu SB; Deng F J Comput Chem; 2009 Jan; 30(2):222-35. PubMed ID: 18785238 [TBL] [Abstract][Full Text] [Related]
30. 31P NMR chemical shifts in hypervalent oxyphosphoranes and polymeric orthophosphates. Zhang Y; Oldfield E J Phys Chem B; 2006 Jan; 110(1):579-86. PubMed ID: 16471570 [TBL] [Abstract][Full Text] [Related]
31. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds. Cuny J; Furet E; Gautier R; Le Pollès L; Pickard CJ; d'Espinose de Lacaillerie JB Chemphyschem; 2009 Dec; 10(18):3320-9. PubMed ID: 19937665 [TBL] [Abstract][Full Text] [Related]
32. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene. Reatto L; Galli DE; Nava M; Cole MW J Phys Condens Matter; 2013 Nov; 25(44):443001. PubMed ID: 24113280 [TBL] [Abstract][Full Text] [Related]
33. Solid-state (17)O NMR and computational studies of C-nitrosoarene compounds. Wu G; Zhu J; Mo X; Wang R; Terskikh V J Am Chem Soc; 2010 Apr; 132(14):5143-55. PubMed ID: 20307099 [TBL] [Abstract][Full Text] [Related]
35. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging. Dracínský M; Kaminský J; Bour P J Chem Phys; 2009 Mar; 130(9):094106. PubMed ID: 19275395 [TBL] [Abstract][Full Text] [Related]
36. Finite-field implementation of NMR chemical shieldings for molecules: direct and converse gauge-including projector-augmented-wave methods. Vasconcelos F; de Wijs GA; Havenith RW; Marsman M; Kresse G J Chem Phys; 2013 Jul; 139(1):014109. PubMed ID: 23822295 [TBL] [Abstract][Full Text] [Related]
37. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2. Lantto P; Kangasvieri S; Vaara J J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233 [TBL] [Abstract][Full Text] [Related]
38. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
39. Double-quantum-filtered rotational-resonance MAS NMR in the presence of large chemical shielding anisotropies. Bechmann M; Helluy X; Sebald A J Magn Reson; 2001 Sep; 152(1):14-25. PubMed ID: 11531360 [TBL] [Abstract][Full Text] [Related]
40. Theoretical investigation of hydrogen bonding effects on oxygen, nitrogen, and hydrogen chemical shielding and electric field gradient tensors of chitosan/HI salt. Khodaei S; Hadipour NL; Kasaai MR Carbohydr Res; 2007 Nov; 342(16):2396-403. PubMed ID: 17707780 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]