These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23423426)

  • 1. Evaluation of the benefits of a myrmecophilous oribatid mite, Aribates javensis, to a myrmicine ant, Myrmecina sp.
    Ito F
    Exp Appl Acarol; 2013 Sep; 61(1):79-85. PubMed ID: 23423426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.
    Bächtold A; Alves-Silva E; Kaminski LA; Del-Claro K
    Naturwissenschaften; 2014 Nov; 101(11):913-9. PubMed ID: 25200736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thelytokous Parthenogenesis in the Ant Myrmecina nipponica (Hymenoptera: Formicidae).
    Masuko K
    Zoolog Sci; 2014 Sep; 31(9):582-6. PubMed ID: 25186929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval stenocephaly related to specialized feeding in the ant genera Amblyopone, Leptanilla and Myrmecina (Hymenoptera: Formicidae).
    Masuko K
    Arthropod Struct Dev; 2008 Mar; 37(2):109-17. PubMed ID: 18089131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Queens stay, workers leave: caste-specific responses to fatal infections in an ant.
    Giehr J; Heinze J
    BMC Evol Biol; 2018 Dec; 18(1):202. PubMed ID: 30587108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly?
    van Dyck H; Oostermeijer JG; Talloen W; Feenstra V; van der Hidde A; Wynhoff I
    Proc Biol Sci; 2000 May; 267(1446):861-6. PubMed ID: 10853727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association.
    Lachaud JP; Klompen H; Pérez-Lachaud G
    Sci Rep; 2016 Jul; 6():29995. PubMed ID: 27444515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The trophic structure of bark-living oribatid mite communities analysed with stable isotopes ((15)N, (13)C) indicates strong niche differentiation.
    Erdmann G; Otte V; Langel R; Scheu S; Maraun M
    Exp Appl Acarol; 2007; 41(1-2):1-10. PubMed ID: 17333459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem.
    Fischer BM; Schatz H; Maraun M
    Exp Appl Acarol; 2010 Nov; 52(3):221-37. PubMed ID: 20490626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational communication between a myrmecophilous butterfly Spindasis lohita (Lepidoptera: Lycaenidae) and its host ant Crematogaster rogenhoferi (Hymenoptera: Formicidae).
    Lin YH; Liao YC; Yang CS; Billen J; Yang MM; Hsu YF
    Sci Rep; 2019 Dec; 9(1):18548. PubMed ID: 31811200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host ant independent oviposition in the parasitic butterfly Maculinea alcon.
    Fürst MA; Nash DR
    Biol Lett; 2010 Apr; 6(2):174-6. PubMed ID: 19864269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ant-mediated indirect negative effects of aphids on spider mites living on the same plant.
    Adachi M; Yano S
    Exp Appl Acarol; 2017 May; 72(1):15-21. PubMed ID: 28509945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new ant-butterfly symbiosis in the forest canopy fills an evolutionary gap.
    Pérez-Lachaud G; Rocha FH; Pozo C; Kaminski LA; Seraphim N; Lachaud JP
    Sci Rep; 2021 Oct; 11(1):20770. PubMed ID: 34675260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources.
    Sala M; Casacci LP; Balletto E; Bonelli S; Barbero F
    PLoS One; 2014; 9(4):e94341. PubMed ID: 24718496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do aphids actively search for ant partners?
    Fischer CY; Vanderplanck M; Lognay GC; Detrain C; Verheggen FJ
    Insect Sci; 2015 Apr; 22(2):283-8. PubMed ID: 24659520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric dispersal and colonization success of Amazonian plant-ants queens.
    Bruna EM; Izzo TJ; Inouye BD; Uriarte M; Vasconcelos HL
    PLoS One; 2011; 6(8):e22937. PubMed ID: 21826219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an alarm pheromone against ants for gaining access to aphid/scale prey by the red velvet mite Balaustium sp. (Erythraeidae) in a honeydew-rich environment.
    Yoder JA; Condon MR; Hart CE; Collier MH; Patrick KR; Benoit JB
    J Exp Biol; 2010 Feb; 213(3):386-92. PubMed ID: 20086122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myrmecophilous pygmephoroid mites (Acari: Pygmephoroidea) associated with Lasius flavus (Hymenoptera: Formicidae) in Russia.
    Khaustov AA
    Zootaxa; 2015 Nov; 4044(3):345-70. PubMed ID: 26624715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling Flight and Reproduction in Ants: Evolution of Ergatoid Queens in Two Lineages of Megalomyrmex (Hymenoptera: Formicidae).
    Peeters C; Adams RM
    J Insect Sci; 2016; 16(1):. PubMed ID: 27620557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).
    Erdmann G; Scheu S; Maraun M
    Exp Appl Acarol; 2012 Jun; 57(2):157-69. PubMed ID: 22460402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.