These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23423552)

  • 1. The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles.
    Wang H; Schultz ZD
    Analyst; 2013 Jun; 138(11):3150-7. PubMed ID: 23423552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-ligand binding investigated by a single nanoparticle TERS approach.
    Carrier SL; Kownacki CM; Schultz ZD
    Chem Commun (Camb); 2011 Feb; 47(7):2065-7. PubMed ID: 21206948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Membrane Receptor-Ligand Specificity with Surface- and Tip- Enhanced Raman Scattering.
    Xiao L; Bailey KA; Wang H; Schultz ZD
    Anal Chem; 2017 Sep; 89(17):9091-9099. PubMed ID: 28805059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-enhanced Raman detection of antibody conjugated nanoparticles on cellular membranes.
    Alexander KD; Schultz ZD
    Anal Chem; 2012 Sep; 84(17):7408-14. PubMed ID: 22881703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TERS detection of αVβ3 integrins in intact cell membranes.
    Wang H; Schultz ZD
    Chemphyschem; 2014 Dec; 15(18):3944-9. PubMed ID: 25212599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating Protein/Ligand Recognition with Combined Surface Plasmon Resonance and Surface Enhanced Raman Spectroscopy.
    Kim JY; Zeng ZC; Xiao L; Schultz ZD
    Anal Chem; 2017 Dec; 89(24):13074-13081. PubMed ID: 29135238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles paper as a SERS bio-diagnostic platform.
    Ngo YH; Then WL; Shen W; Garnier G
    J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Li JF; Huang YF; Ding Y; Yang ZL; Li SB; Zhou XS; Fan FR; Zhang W; Zhou ZY; Wu DY; Ren B; Wang ZL; Tian ZQ
    Nature; 2010 Mar; 464(7287):392-5. PubMed ID: 20237566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a Biocompatible Mica/Gold Surface for Tip-Enhanced Raman Spectroscopy.
    You X; Casper CB; Lentz EE; Erie DA; Atkin JM
    Chemphyschem; 2020 Feb; 21(3):188-193. PubMed ID: 31912640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-controlled surface-enhanced Raman spectroscopy of nanoparticles.
    Le D; Kögler M; Guo TL; Roussey M; Hiltunen J
    Opt Lett; 2023 Mar; 48(6):1454-1457. PubMed ID: 36946951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer.
    Mahmoud AYF; Rusin CJ; McDermott MT
    Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous Pt nanostructures surface functionalized with phenylboronic acid phosphonic acid derivatives as potential biochemical nanosensors and drugs: SERS and TERS studies.
    Proniewicz E; Gralec B; Ozaki Y
    J Biomed Mater Res B Appl Biomater; 2023 Jun; 111(6):1197-1206. PubMed ID: 36715221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Detection of RGD-Integrin Binding in Cancer Cells Using Tip Enhanced Raman Scattering Microscopy.
    Xiao L; Wang H; Schultz ZD
    Anal Chem; 2016 Jun; 88(12):6547-53. PubMed ID: 27189228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Electric Fields in SERS and TERS Using the Vibrational Stark Effect.
    Marr JM; Schultz ZD
    J Phys Chem Lett; 2013 Oct; 4(19):. PubMed ID: 24273634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.