These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23423582)

  • 1. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain.
    Kang SG; Huynh T; Zhou R
    Nanoscale; 2013 Apr; 5(7):2703-12. PubMed ID: 23423582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications.
    Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G
    Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.
    Shi B; Zuo G; Xiu P; Zhou R
    J Phys Chem B; 2013 Apr; 117(13):3541-7. PubMed ID: 23477344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of Gd@C
    Liu J; Kang SG; Wang P; Wang Y; Lv X; Liu Y; Wang F; Gu Z; Yang Z; Weber JK; Tao N; Qin Z; Miao Q; Chen C; Zhou R; Zhao Y
    Biomaterials; 2018 Jan; 152():24-36. PubMed ID: 29080421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual inhibitory pathways of metallofullerenol Gd@C₈₂(OH)₂₂ on matrix metalloproteinase-2: molecular insight into drug-like nanomedicine.
    Kang SG; Araya-Secchi R; Wang D; Wang B; Huynh T; Zhou R
    Sci Rep; 2014 Apr; 4():4775. PubMed ID: 24758941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs.
    Romir J; Lilie H; Egerer-Sieber C; Bauer F; Sticht H; Muller YA
    J Mol Biol; 2007 Feb; 365(5):1417-28. PubMed ID: 17118402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive inhibition of metallofullerenol Gd@C(82)(OH)(22) on WW domain: implication on signal transduction pathway.
    Kang SG; Huynh T; Zhou R
    Sci Rep; 2012; 2():957. PubMed ID: 23233876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charging nanoparticles: increased binding of Gd@C
    Chen SH; Kang SG; Luo J; Zhou R
    Nanoscale; 2018 Mar; 10(12):5667-5677. PubMed ID: 29528358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans.
    Zhang W; Sun B; Zhang L; Zhao B; Nie G; Zhao Y
    Nanoscale; 2011 Jun; 3(6):2636-41. PubMed ID: 21541378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane delivery of aggregated [Gd@C82(OH)22]n nanoparticles.
    Zhang M; Xing G; Yuan H; Chang X; Jing L; Zhao Y; Zhu C; Fang X
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8556-61. PubMed ID: 21121366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gd-Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1.
    Pan Y; Wang L; Kang SG; Lu Y; Yang Z; Huynh T; Chen C; Zhou R; Guo M; Zhao Y
    ACS Nano; 2015 Jul; 9(7):6826-36. PubMed ID: 26083726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics.
    Meng J; Wang DL; Wang PC; Jia L; Chen C; Liang XJ
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8610-6. PubMed ID: 21121373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules.
    Yin X; Zhao L; Kang SG; Pan J; Song Y; Zhang M; Xing G; Wang F; Li J; Zhou R; Zhao Y
    Nanoscale; 2013 Aug; 5(16):7341-8. PubMed ID: 23820497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains.
    Chan DC; Bedford MT; Leder P
    EMBO J; 1996 Mar; 15(5):1045-54. PubMed ID: 8605874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src.
    Shen Z; Batzer A; Koehler JA; Polakis P; Schlessinger J; Lydon NB; Moran MF
    Oncogene; 1999 Aug; 18(33):4647-53. PubMed ID: 10467411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1.
    McDonald CB; Seldeen KL; Deegan BJ; Farooq A
    Arch Biochem Biophys; 2008 Nov; 479(1):52-62. PubMed ID: 18778683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study.
    Wang L; Meng J; Cao W; Li Q; Qiu Y; Sun B; Li LM
    Methods; 2014 Jun; 67(3):394-406. PubMed ID: 24440483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into the binding diversity between the human Nck2 SH3 domains and proline-rich proteins.
    Liu J; Li M; Ran X; Fan JS; Song J
    Biochemistry; 2006 Jun; 45(23):7171-84. PubMed ID: 16752908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gd-Metallofullerenol nanoparticles cause intracellular accumulation of PDGFR-α and morphology alteration of fibroblasts.
    Tang J; Guo M; Wang P; Liu J; Xiao Y; Cheng W; Gao J; Hu W; Miao QR
    Nanoscale; 2019 Mar; 11(11):4743-4750. PubMed ID: 30604821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28.
    Marengère LE; Okkenhaug K; Clavreul A; Couez D; Gibson S; Mills GB; Mak TW; Rottapel R
    J Immunol; 1997 Oct; 159(7):3220-9. PubMed ID: 9317120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.