BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23423659)

  • 21. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves.
    Nomura S; Fujisawa H; Suzuki M
    Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Strata NSC and Codman Hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon devices.
    Arnell K; Koskinen LO; Malm J; Eklund A
    J Neurosurg Pediatr; 2009 Mar; 3(3):166-72. PubMed ID: 19338461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study.
    Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH
    PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic field hazards involving adjustable shunt valves in hydrocephalus.
    Schneider T; Knauff U; Nitsch J; Firsching R
    J Neurosurg; 2002 Feb; 96(2):331-4. PubMed ID: 11838808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus.
    McGirt MJ; Buck DW; Sciubba D; Woodworth GF; Carson B; Weingart J; Jallo G
    Childs Nerv Syst; 2007 Mar; 23(3):289-95. PubMed ID: 17106749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Setting pressure can change the size and shape of MRI artifacts caused by adjustable shunt valves: a study of the 4 newest models.
    Uchida D; Amano Y; Nakatogawa H; Masui T; Ando N; Nakayama T; Sato H; Sameshima T; Tanaka T
    J Neurosurg; 2018 May; 130(4):1260-1267. PubMed ID: 29775146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Sgouros S; Dipple SJ
    J Neurosurg; 2004 Mar; 100(3):534-40. PubMed ID: 15035291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of exposure from iPhone 12 on programmable ventriculoperitoneal shunts.
    Kumar A; Pervaiz A; Borg A; Abdul-Hamid A; Jeyaretna S; MacKeith S; Qureishi A
    Br J Neurosurg; 2022 Jun; 36(3):415-419. PubMed ID: 35062838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Strata programmable valve for shunt-dependent hydrocephalus: the pediatric experience at a single institution.
    Ahn ES; Bookland M; Carson BS; Weingart JD; Jallo GI
    Childs Nerv Syst; 2007 Mar; 23(3):297-303. PubMed ID: 17028879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experience with the Strata valve in the management of shunt overdrainage.
    Kondageski C; Thompson D; Reynolds M; Hayward RD
    J Neurosurg; 2007 Feb; 106(2 Suppl):95-102. PubMed ID: 17330533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature.
    Nowak S; Mehdorn HM; Stark A
    Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory.
    Chari A; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg; 2014 Mar; 120(3):697-707. PubMed ID: 24405071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of Programmable Shunt Setting Using CT: Feasibility Study.
    Slonimsky E; Zacharia B; Mamourian A
    Cureus; 2021 Nov; 13(11):e19818. PubMed ID: 34963836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.