BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23423755)

  • 1. Radiolabeled nanogels for nuclear molecular imaging.
    Singh S; Bingöl B; Morgenroth A; Mottaghy FM; Möller M; Schmaljohann J
    Macromol Rapid Commun; 2013 Apr; 34(7):562-7. PubMed ID: 23423755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of fluorescent organometallic porphyrin complex nanogels of controlled molecular structure via reverse-emulsion click chemistry.
    Fu GD; Jiang H; Yao F; Xu LQ; Ling J; Kang ET
    Macromol Rapid Commun; 2012 Sep; 33(18):1523-7. PubMed ID: 22786873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs.
    Lee WC; Li YC; Chu IM
    Macromol Biosci; 2006 Oct; 6(10):846-54. PubMed ID: 17039577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposome-templated supramolecular assembly of responsive alginate nanogels.
    Hong JS; Vreeland WN; Lacerda SH; Locascio LE; Gaitan M; Raghavan SR
    Langmuir; 2008 Apr; 24(8):4092-6. PubMed ID: 18338908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and structural characterization of chitosan nanogels.
    Brunel F; Véron L; Ladavière C; David L; Domard A; Delair T
    Langmuir; 2009 Aug; 25(16):8935-43. PubMed ID: 19572536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable thermoresponsive nanogels for protein encapsulation and controlled release.
    Bhuchar N; Sunasee R; Ishihara K; Thundat T; Narain R
    Bioconjug Chem; 2012 Jan; 23(1):75-83. PubMed ID: 22171688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells.
    Li F; Bae BC; Na K
    Bioconjug Chem; 2010 Jul; 21(7):1312-20. PubMed ID: 20586473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells.
    Mimi H; Ho KM; Siu YS; Wu A; Li P
    J Control Release; 2012 Feb; 158(1):123-30. PubMed ID: 22094103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization.
    Ma K; Xu Y; An Z
    Macromol Rapid Commun; 2015 Mar; 36(6):566-70. PubMed ID: 25684634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning molecular recognition in water-soluble nanogels with enzyme-like activity for the kemp elimination.
    Servant A; Haupt K; Resmini M
    Chemistry; 2011 Sep; 17(39):11052-9. PubMed ID: 21853477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones.
    Hirakura T; Nomura Y; Aoyama Y; Akiyoshi K
    Biomacromolecules; 2004; 5(5):1804-9. PubMed ID: 15360291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Clickable" Nanogels via Thermally Driven Self-Assembly of Polymers: Facile Access to Targeted Imaging Platforms using Thiol-Maleimide Conjugation.
    Aktan B; Chambre L; Sanyal R; Sanyal A
    Biomacromolecules; 2017 Feb; 18(2):490-497. PubMed ID: 28052673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Characterization of Stable Soy β-Conglycinin-Dextran Core-Shell Nanogels Prepared via a Self-Assembly Approach at the Isoelectric Point.
    Feng JL; Qi JR; Yin SW; Wang JM; Guo J; Weng JY; Liu QR; Yang XQ
    J Agric Food Chem; 2015 Jul; 63(26):6075-83. PubMed ID: 26075494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalizable and ultrastable zwitterionic nanogels.
    Cheng G; Mi L; Cao Z; Xue H; Yu Q; Carr L; Jiang S
    Langmuir; 2010 May; 26(10):6883-6. PubMed ID: 20405859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs.
    Oh JK; Siegwart DJ; Matyjaszewski K
    Biomacromolecules; 2007 Nov; 8(11):3326-31. PubMed ID: 17894465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient inhibition of an intraperitoneal xenograft model of human ovarian cancer by HSulf-1 gene delivered by biodegradable cationic heparin-polyethyleneimine nanogels.
    Liu P; Gou M; Yi T; Xie C; Qi X; Zhou S; Deng H; Wei Y; Zhao X
    Oncol Rep; 2012 Feb; 27(2):363-70. PubMed ID: 22086394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation.
    Wu L; Zhou H; Sun HJ; Zhao Y; Yang X; Cheng SZ; Yang G
    Biomacromolecules; 2013 Apr; 14(4):1078-84. PubMed ID: 23458422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels.
    Mok H; Park TG
    Bioconjug Chem; 2006; 17(6):1369-72. PubMed ID: 17105212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and pH-sensitive protein nanogels made by self-assembly of heat denatured soy protein.
    Chen N; Lin L; Sun W; Zhao M
    J Agric Food Chem; 2014 Oct; 62(39):9553-61. PubMed ID: 25180907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysozyme-dextran core-shell nanogels prepared via a green process.
    Li J; Yu S; Yao P; Jiang M
    Langmuir; 2008 Apr; 24(7):3486-92. PubMed ID: 18302424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.