These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23423873)

  • 1. Mapping the biological oxidative damage of engineered nanomaterials.
    Hsieh SF; Bello D; Schmidt DF; Pal AK; Stella A; Isaacs JA; Rogers EJ
    Small; 2013 May; 9(9-10):1853-65. PubMed ID: 23423873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: human blood serum.
    Rogers EJ; Hsieh SF; Organti N; Schmidt D; Bello D
    Toxicol In Vitro; 2008 Sep; 22(6):1639-47. PubMed ID: 18593597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches to the safety assessment of engineered nanomaterials (ENM) in food.
    Cockburn A; Bradford R; Buck N; Constable A; Edwards G; Haber B; Hepburn P; Howlett J; Kampers F; Klein C; Radomski M; Stamm H; Wijnhoven S; Wildemann T
    Food Chem Toxicol; 2012 Jun; 50(6):2224-42. PubMed ID: 22245376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicological aspects for nanomaterial in humans.
    Dusinska M; Magdolenova Z; Fjellsbø LM
    Methods Mol Biol; 2013; 948():1-12. PubMed ID: 23070759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Health implications of engineered nanomaterials.
    Pietroiusti A
    Nanoscale; 2012 Feb; 4(4):1231-47. PubMed ID: 22278373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered nanomaterials and oxidative stress: current understanding and future challenges.
    Mendoza RP; Brown JM
    Curr Opin Toxicol; 2019 Feb; 13():74-80. PubMed ID: 31263794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
    Callaghan NI; MacCormack TJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neurotoxicity induced by engineered nanomaterials.
    Ge D; Du Q; Ran B; Liu X; Wang X; Ma X; Cheng F; Sun B
    Int J Nanomedicine; 2019; 14():4167-4186. PubMed ID: 31239675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants.
    Liu Y; Nie Y; Wang J; Wang J; Wang X; Chen S; Zhao G; Wu L; Xu A
    Ecotoxicol Environ Saf; 2018 Oct; 162():92-102. PubMed ID: 29990744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals.
    Møller P; Jensen DM; Christophersen DV; Kermanizadeh A; Jacobsen NR; Hemmingsen JG; Danielsen PH; Karottki DG; Roursgaard M; Cao Y; Jantzen K; Klingberg H; Hersoug LG; Loft S
    Environ Mol Mutagen; 2015 Mar; 56(2):97-110. PubMed ID: 25196723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A redox proteomics approach to investigate the mode of action of nanomaterials.
    Riebeling C; Wiemann M; Schnekenburger J; Kuhlbusch TA; Wohlleben W; Luch A; Haase A
    Toxicol Appl Pharmacol; 2016 May; 299():24-9. PubMed ID: 26827820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials.
    Petersen EJ; Ceger P; Allen DG; Coyle J; Derk R; Garcia-Reyero N; Gordon J; Kleinstreuer NC; Matheson J; McShan D; Nelson BC; Patri AK; Rice P; Rojanasakul L; Sasidharan A; Scarano L; Chang X
    ALTEX; 2022; 39(2):183–206. PubMed ID: 34874455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials.
    Pal AK; Bello D; Cohen J; Demokritou P
    Nanotoxicology; 2015; 9(7):871-85. PubMed ID: 25672815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.