These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 23424014)

  • 1. Plant-bacterium interactions analyzed by proteomics.
    Afroz A; Zahur M; Zeeshan N; Komatsu S
    Front Plant Sci; 2013; 4():21. PubMed ID: 23424014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial adaptation to life in association with plants - A proteomic perspective from culture to in situ conditions.
    Knief C; Delmotte N; Vorholt JA
    Proteomics; 2011 Aug; 11(15):3086-105. PubMed ID: 21548095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-microbe interactions: shaping the evolution of the plant immune response.
    Chisholm ST; Coaker G; Day B; Staskawicz BJ
    Cell; 2006 Feb; 124(4):803-14. PubMed ID: 16497589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling plant responses to bacterial pathogens through proteomics.
    Zimaro T; Gottig N; Garavaglia BS; Gehring C; Ottado J
    J Biomed Biotechnol; 2011; 2011():354801. PubMed ID: 22131803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions.
    He P; Shan L; Sheen J
    Cell Microbiol; 2007 Jun; 9(6):1385-96. PubMed ID: 17451411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
    Henry E; Yadeta KA; Coaker G
    New Phytol; 2013 Sep; 199(4):908-15. PubMed ID: 23909802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant immunity: a lesson from pathogenic bacterial effector proteins.
    Cui H; Xiang T; Zhou JM
    Cell Microbiol; 2009 Oct; 11(10):1453-61. PubMed ID: 19622098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances on molecular mechanisms of plant-pathogen interactions].
    Cheng X; Tian CJ; Li AN; Qiu JL
    Yi Chuan; 2012 Feb; 34(2):134-44. PubMed ID: 22382055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of small RNAs in plant biotic stress response.
    Huang J; Yang M; Zhang X
    J Integr Plant Biol; 2016 Apr; 58(4):312-27. PubMed ID: 26748943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonhost resistance against bacterial pathogens: retrospectives and prospects.
    Senthil-Kumar M; Mysore KS
    Annu Rev Phytopathol; 2013; 51():407-27. PubMed ID: 23725473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern recognition receptors and their interactions with bacterial type III effectors in plants.
    Lee JH; Kim H; Chae WB; Oh MH
    Genes Genomics; 2019 May; 41(5):499-506. PubMed ID: 30830683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Plant Defense System in Response to Microbial Interactions.
    Nishad R; Ahmed T; Rahman VJ; Kareem A
    Front Microbiol; 2020; 11():1298. PubMed ID: 32719660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making sense of hormone crosstalk during plant immune responses.
    Spoel SH; Dong X
    Cell Host Microbe; 2008 Jun; 3(6):348-51. PubMed ID: 18541211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effector-triggered post-translational modifications and their role in suppression of plant immunity.
    Howden AJ; Huitema E
    Front Plant Sci; 2012; 3():160. PubMed ID: 22811685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by
    Kang X; Wang L; Guo Y; Ul Arifeen MZ; Cai X; Xue Y; Bu Y; Wang G; Liu C
    Mol Plant Microbe Interact; 2019 Oct; 32(10):1336-1347. PubMed ID: 31125282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering plant-microbe crosstalk through proteomics studies.
    Jain A; Singh HB; Das S
    Microbiol Res; 2021 Jan; 242():126590. PubMed ID: 33022544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango.
    Hwang EE; Wang MB; Bravo JE; Banta LM
    Front Plant Sci; 2015; 6():200. PubMed ID: 25873923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward understanding of rice innate immunity against Magnaporthe oryzae.
    Azizi P; Rafii MY; Abdullah SN; Nejat N; Maziah M; Hanafi MM; Latif MA; Sahebi M
    Crit Rev Biotechnol; 2016; 36(1):165-74. PubMed ID: 25198435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.
    Jwa NS; Hwang BK
    Front Plant Sci; 2017; 8():1687. PubMed ID: 29033963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
    Boller T; He SY
    Science; 2009 May; 324(5928):742-4. PubMed ID: 19423812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.