BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23425220)

  • 21. Facilitating complex DNA mixture interpretation by sequencing highly polymorphic haplotypes.
    Voskoboinik L; Motro U; Darvasi A
    Forensic Sci Int Genet; 2018 Jul; 35():136-140. PubMed ID: 29775859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
    Bleka Ø; Storvik G; Gill P
    Forensic Sci Int Genet; 2016 Mar; 21():35-44. PubMed ID: 26720812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Searching mixed DNA profiles directly against profile databases.
    Bright JA; Taylor D; Curran J; Buckleton J
    Forensic Sci Int Genet; 2014 Mar; 9():102-10. PubMed ID: 24528588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interpreting a major component from a mixed DNA profile with an unknown number of minor contributors.
    Bille T; Weitz S; Buckleton JS; Bright JA
    Forensic Sci Int Genet; 2019 May; 40():150-159. PubMed ID: 30844683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpreting forensic DNA profiling evidence without specifying the number of contributors.
    Taylor D; Bright JA; Buckleton J
    Forensic Sci Int Genet; 2014 Nov; 13():269-80. PubMed ID: 25261845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in.
    Mitchell AA; Tamariz J; O'Connell K; Ducasse N; Budimlija Z; Prinz M; Caragine T
    Forensic Sci Int Genet; 2012 Dec; 6(6):749-61. PubMed ID: 22999739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.
    Manabe S; Morimoto C; Hamano Y; Fujimoto S; Tamaki K
    PLoS One; 2017; 12(11):e0188183. PubMed ID: 29149210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06). Reporting conclusions: Results and evaluation.
    Barrio PA; Crespillo M; Luque JA; Aler M; Baeza-Richer C; Baldassarri L; Carnevali E; Coufalova P; Flores I; García O; García MA; González R; Hernández A; Inglés V; Luque GM; Mosquera-Miguel A; Pedrosa S; Pontes ML; Porto MJ; Posada Y; Ramella MI; Ribeiro T; Riego E; Sala A; Saragoni VG; Serrano A; Vannelli S
    Forensic Sci Int Genet; 2018 Jul; 35():156-163. PubMed ID: 29783171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Likelihood Ratio Calculation Using LRmix Studio.
    Foley MM
    Methods Mol Biol; 2023; 2685():307-328. PubMed ID: 37439990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validating TrueAllele® DNA mixture interpretation.
    Perlin MW; Legler MM; Spencer CE; Smith JL; Allan WP; Belrose JL; Duceman BW
    J Forensic Sci; 2011 Nov; 56(6):1430-47. PubMed ID: 21827458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.
    Chan Mun Wei J; Zhao Z; Li SC; Ng YK
    Comput Biol Chem; 2018 Jun; 74():428-433. PubMed ID: 29625871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An assessment of the information content of likelihood ratios derived from complex mixtures.
    Marsden CD; Rudin N; Inman K; Lohmueller KE
    Forensic Sci Int Genet; 2016 May; 22():64-72. PubMed ID: 26851613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determining the number of contributors to DNA mixtures in the low-template regime: Exploring the impacts of sampling and detection effects.
    Norsworthy S; Lun DS; Grgicak CM
    Leg Med (Tokyo); 2018 May; 32():1-8. PubMed ID: 29453054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The efficacy of DNA mixture to mixture matching.
    Bright JA; Taylor D; Kerr Z; Buckleton J; Kruijver M
    Forensic Sci Int Genet; 2019 Jul; 41():64-71. PubMed ID: 30986620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four model variants within a continuous forensic DNA mixture interpretation framework: Effects on evidential inference and reporting.
    Swaminathan H; Qureshi MO; Grgicak CM; Duffy K; Lun DS
    PLoS One; 2018; 13(11):e0207599. PubMed ID: 30458020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A large-scale validation of NOCIt's a posteriori probability of the number of contributors and its integration into forensic interpretation pipelines.
    Grgicak CM; Karkar S; Yearwood-Garcia X; Alfonse LE; Duffy KR; Lun DS
    Forensic Sci Int Genet; 2020 Jul; 47():102296. PubMed ID: 32339916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying the most likely contributors to a Y-STR mixture using the discrete Laplace method.
    Andersen MM; Eriksen PS; Mogensen HS; Morling N
    Forensic Sci Int Genet; 2015 Mar; 15():76-83. PubMed ID: 25303788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture.
    Haned H; Pène L; Sauvage F; Pontier D
    Forensic Sci Int Genet; 2011 Aug; 5(4):281-4. PubMed ID: 20488773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA mixture genotyping by probabilistic computer interpretation of binomially-sampled laser captured cell populations: combining quantitative data for greater identification information.
    Ballantyne J; Hanson EK; Perlin MW
    Sci Justice; 2013 Jun; 53(2):103-14. PubMed ID: 23601717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of allelic drop-out using the Identifiler(®) and PowerPlex(®) 16 forensic STR typing systems.
    Lohmueller KE; Rudin N; Inman K
    Forensic Sci Int Genet; 2014 Sep; 12():1-11. PubMed ID: 24841801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.