BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23425461)

  • 1. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.
    Hollman DS; Wilke JJ; Schaefer HF
    J Chem Phys; 2013 Feb; 138(6):064107. PubMed ID: 23425461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory.
    Maurer SA; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2013 Jan; 138(1):014101. PubMed ID: 23298022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K
    J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear-scaling symmetry-adapted perturbation theory with scaled dispersion.
    Maurer SA; Beer M; Lambrecht DS; Ochsenfeld C
    J Chem Phys; 2013 Nov; 139(18):184104. PubMed ID: 24320251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF; Janssen CL
    J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory.
    Schweizer S; Doser B; Ochsenfeld C
    J Chem Phys; 2008 Apr; 128(15):154101. PubMed ID: 18433184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory.
    Werner HJ
    J Chem Phys; 2008 Sep; 129(10):101103. PubMed ID: 19044900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions.
    Li W
    J Chem Phys; 2013 Jan; 138(1):014106. PubMed ID: 23298027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory.
    Doser B; Lambrecht DS; Ochsenfeld C
    Phys Chem Chem Phys; 2008 Jun; 10(23):3335-44. PubMed ID: 18535715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesky-decomposed densities in Laplace-based second-order Møller-Plesset perturbation theory.
    Zienau J; Clin L; Doser B; Ochsenfeld C
    J Chem Phys; 2009 May; 130(20):204112. PubMed ID: 19485442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions.
    Marchetti O; Werner HJ
    Phys Chem Chem Phys; 2008 Jun; 10(23):3400-9. PubMed ID: 18535723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals.
    Pavošević F; Pinski P; Riplinger C; Neese F; Valeev EF
    J Chem Phys; 2016 Apr; 144(14):144109. PubMed ID: 27083710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size.
    Ma Q; Werner HJ
    J Chem Theory Comput; 2015 Nov; 11(11):5291-304. PubMed ID: 26574323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: can one reach the basis set limit without extrapolation?
    Balabin RM
    J Chem Phys; 2010 Jun; 132(21):211103. PubMed ID: 20528011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals.
    Hättig C; Tew DP; Helmich B
    J Chem Phys; 2012 May; 136(20):204105. PubMed ID: 22667538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.
    Usvyat D; Civalleri B; Maschio L; Dovesi R; Pisani C; Schütz M
    J Chem Phys; 2011 Jun; 134(21):214105. PubMed ID: 21663342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors.
    Werner HJ; Knizia G; Krause C; Schwilk M; Dornbach M
    J Chem Theory Comput; 2015 Feb; 11(2):484-507. PubMed ID: 26580908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.