These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23425486)

  • 1. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport.
    Firouzi M; Wilcox J
    J Chem Phys; 2013 Feb; 138(6):064705. PubMed ID: 23425486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-adsorption of N2 in the presence of CH4 within carbon nanospaces: evidence from molecular simulations.
    Kumar KV; Rodríguez-Reinoso F
    Nanotechnology; 2013 Jan; 24(3):035401. PubMed ID: 23263466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations.
    Jin Z; Firoozabadi A
    J Chem Phys; 2015 Sep; 143(10):104315. PubMed ID: 26374043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores.
    Firouzi M; Nezhad KhM; Tsotsis TT; Sahimi M
    J Chem Phys; 2004 May; 120(17):8172-85. PubMed ID: 15267737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites.
    Jee SE; Sholl DS
    J Am Chem Soc; 2009 Jun; 131(22):7896-904. PubMed ID: 19422215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some remarks on the calculation of the pore size distribution function of activated carbons.
    Gauden PA; Terzyk AP; Kowalczyk P
    J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tractable molecular theory of transport of Lennard-Jones fluids in nanopores.
    Bhatia SK; Jepps O; Nicholson D
    J Chem Phys; 2004 Mar; 120(9):4472-85. PubMed ID: 15268615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder.
    Billemont P; Coasne B; De Weireld G
    Langmuir; 2013 Mar; 29(10):3328-38. PubMed ID: 23346958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of adsorption and transport in hierarchical porous materials.
    Coasne B; Galarneau A; Gerardin C; Fajula F; Villemot F
    Langmuir; 2013 Jun; 29(25):7864-75. PubMed ID: 23718554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion in porous crystalline materials.
    Krishna R
    Chem Soc Rev; 2012 Apr; 41(8):3099-118. PubMed ID: 22262346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling molecular transport in slit pores.
    Jepps OG; Bhatia SK; Searles DJ
    J Chem Phys; 2004 Mar; 120(11):5396-406. PubMed ID: 15267413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures.
    Furmaniak S; Kowalczyk P; Terzyk AP; Gauden PA; Harris PJ
    J Colloid Interface Sci; 2013 May; 397():144-53. PubMed ID: 23433521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport properties and distribution of water molecules confined in hydrophobic nanopores and nanoslits.
    Liu Y; Wang Q; Lu L
    Langmuir; 2004 Aug; 20(16):6921-6. PubMed ID: 15274604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling high-temperature diffusion of gases in micro and mesoporous amorphous carbon.
    Ranganathan R; Rokkam S; Desai T; Keblinski P; Cross P; Burnes R
    J Chem Phys; 2015 Aug; 143(8):084701. PubMed ID: 26328861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Simulation on Competitive Adsorption Differences of Gas with Different Pore Sizes in Coal.
    Han Q; Deng C; Gao T; Jin Z
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Structure of Adsorbed CO(2) in Slitlike Micropores at Low and High Temperature and the Resulting Micropore Size Distribution Based on GCMC Simulations.
    Samios S; Stubos AK; Papadopoulos GK; Kanellopoulos NK; Rigas F
    J Colloid Interface Sci; 2000 Apr; 224(2):272-290. PubMed ID: 10727338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.
    Guo C; Wei M; Liu H
    PLoS One; 2015; 10(12):e0143649. PubMed ID: 26657698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations.
    Leyssale JM; Papadopoulos GK; Theodorou DN
    J Phys Chem B; 2006 Nov; 110(45):22742-53. PubMed ID: 17092025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density inhomogeneity and diffusion behavior of fluids in micropores by molecular-dynamics simulation.
    Liu YC; Wang Q; Lu LH
    J Chem Phys; 2004 Jun; 120(22):10728-35. PubMed ID: 15268098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.