These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23425489)

  • 1. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell.
    Kumar M; Edwards BJ; Paddison SJ
    J Chem Phys; 2013 Feb; 138(6):064903. PubMed ID: 23425489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio molecular dynamics of proton networks in narrow polymer electrolyte pores.
    Ilhan MA; Spohr E
    J Phys Condens Matter; 2011 Jun; 23(23):234104. PubMed ID: 21613694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyses of interfacial resistances in a membrane-electrode assembly for a proton exchange membrane fuel cell using symmetrical impedance spectroscopy.
    Seo SJ; Woo JJ; Yun SH; Lee HJ; Park JS; Xu T; Yang TH; Lee J; Moon SH
    Phys Chem Chem Phys; 2010 Dec; 12(46):15291-300. PubMed ID: 20953477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of interfacial water transport resistance on coupled proton and water transport across Nafion.
    Cheah MJ; Kevrekidis IG; Benziger J
    J Phys Chem B; 2011 Sep; 115(34):10239-50. PubMed ID: 21780814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of radially dependent parameters on proton transport in polymer electrolyte membrane nanopores.
    Ladipo KO; Berg P; Kimmerle SJ; Novruzi A
    J Chem Phys; 2011 Feb; 134(7):074103. PubMed ID: 21341824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells.
    Sambandam S; Parrondo J; Ramani V
    Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation.
    Choo MJ; Oh KH; Kim HT; Park JK
    ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.
    Soboleva T; Malek K; Xie Z; Navessin T; Holdcroft S
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1827-37. PubMed ID: 21574609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells.
    Barique MA; Wu L; Takimoto N; Kidena K; Ohira A
    J Phys Chem B; 2009 Dec; 113(49):15921-7. PubMed ID: 19908869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells.
    Gong Q; Li C; Liu Y; Ilavsky J; Guo F; Cheng X; Xie J
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37004-37013. PubMed ID: 34323080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionomer structure and component transport in the cathode catalyst layer of PEM fuel cells: A molecular dynamics study.
    Huang Y; Theodorakis PE; Zeng Z; Wang T; Che Z
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38288759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis.
    Olbrich W; Kadyk T; Sauter U; Eikerling M; Gostick J
    Sci Rep; 2023 Aug; 13(1):14127. PubMed ID: 37644035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Tsuzuki S; Hayamizu K; Okada T
    J Phys Chem B; 2006 Dec; 110(48):24410-7. PubMed ID: 17134195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.
    Schalenbach M; Zillgitt M; Maier W; Stolten D
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15746-51. PubMed ID: 26154401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zoom in Catalyst/Ionomer Interface in Polymer Electrolyte Membrane Fuel Cell Electrodes: Impact of Catalyst/Ionomer Dispersion Media/Solvent.
    Sharma R; Andersen SM
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38125-38133. PubMed ID: 30360111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared imaging of water in a polymer electrolyte membrane during a fuel cell operation.
    Morita S; Jojima Y; Miyata Y; Kitagawa K
    Anal Chem; 2010 Nov; 82(22):9221-4. PubMed ID: 20964316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application.
    Van Cleve T; Khandavalli S; Chowdhury A; Medina S; Pylypenko S; Wang M; More KL; Kariuki N; Myers DJ; Weber AZ; Mauger SA; Ulsh M; Neyerlin KC
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46953-46964. PubMed ID: 31742376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.