These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23425499)

  • 1. Fragmentation pathways during Maillard-induced carbohydrate degradation.
    Smuda M; Glomb MA
    J Agric Food Chem; 2013 Oct; 61(43):10198-208. PubMed ID: 23425499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Dicarbonyl compounds--key intermediates for the formation of carbohydrate-based melanoidins.
    Kroh LW; Fiedler T; Wagner J
    Ann N Y Acad Sci; 2008 Apr; 1126():210-5. PubMed ID: 18448818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.
    Davídek T; Robert F; Devaud S; Vera FA; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into the maillard catalyzed degradation of maltose.
    Smuda M; Glomb MA
    J Agric Food Chem; 2011 Dec; 59(24):13254-64. PubMed ID: 22122608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.
    Davídek T; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6667-76. PubMed ID: 16939325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of reactive alpha-dicarbonyl compounds generated from the Maillard reactions of L-methionine with reducing sugars via their stable quinoxaline derivatives.
    Pfeifer YV; Kroh LW
    J Agric Food Chem; 2010 Jul; 58(14):8293-9. PubMed ID: 20572669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways of the Maillard reaction under physiological conditions.
    Henning C; Glomb MA
    Glycoconj J; 2016 Aug; 33(4):499-512. PubMed ID: 27291759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maillard reaction products in tissue proteins: new products and new perspectives.
    Thorpe SR; Baynes JW
    Amino Acids; 2003 Dec; 25(3-4):275-81. PubMed ID: 14661090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer.
    Rakete S; Klaus A; Glomb MA
    J Agric Food Chem; 2014 Oct; 62(40):9876-84. PubMed ID: 25220643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of chemical pathways in the maillard reaction by 17O-NMR spectroscopy.
    Robert F; Vera FA; Kervella F; Davidek T; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():63-72. PubMed ID: 16037223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the spectrum of α-dicarbonyl compounds in vivo.
    Henning C; Liehr K; Girndt M; Ulrich C; Glomb MA
    J Biol Chem; 2014 Oct; 289(41):28676-88. PubMed ID: 25164824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Dicarbonyl compounds formed by nonenzymatic browning during the dry heating of caseinate and lactose.
    Ge Pan G; Oliver CM; Melton LD
    J Agric Food Chem; 2006 Sep; 54(18):6852-7. PubMed ID: 16939349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-deoxypentosulose: an alpha-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2002 Mar; 50(6):1659-64. PubMed ID: 11879053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dicarbonyl intermediates in the maillard reaction.
    Thornalley PJ
    Ann N Y Acad Sci; 2005 Jun; 1043():111-7. PubMed ID: 16037229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C.
    Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN
    J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.