BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23425542)

  • 1. Volumetric assessment of lesion severity with optical coherence tomography: relationship with fractional flow.
    Guagliumi G; Sirbu V; Petroff C; Capodanno D; Musumeci G; Yamamoto H; Elbasiony A; Brushett C; Matiashvili A; Lortkipanidze N; Valsecchi O; Bezerra HG; Schmitt JM
    EuroIntervention; 2013 Feb; 8(10):1172-81. PubMed ID: 23425542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hemodynamically severe coronary stenosis as determined by fractional flow reserve with frequency domain optical coherence tomography measured anatomical parameters.
    Zafar H; Ullah I; Dinneen K; Matiullah S; Hanley A; Leahy MJ; Sharif F
    J Cardiol; 2014 Jul; 64(1):19-24. PubMed ID: 24368093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis.
    Zafar H; Sharif F; Leahy MJ
    Int Heart J; 2014; 55(4):307-11. PubMed ID: 24909988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease.
    Seike F; Uetani T; Nishimura K; Kawakami H; Higashi H; Aono J; Nagai T; Inoue K; Suzuki J; Kawakami H; Okura T; Yasuda K; Higaki J; Ikeda S
    Am J Cardiol; 2017 Nov; 120(10):1772-1779. PubMed ID: 28864324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes.
    Reith S; Battermann S; Jaskolka A; Lehmacher W; Hoffmann R; Marx N; Burgmaier M
    Heart; 2013 May; 99(10):700-7. PubMed ID: 23543283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve.
    Pyxaras SA; Tu S; Barbato E; Barbati G; Di Serafino L; De Vroey F; Toth G; Mangiacapra F; Sinagra G; De Bruyne B; Reiber JH; Wijns W
    Am Heart J; 2013 Dec; 166(6):1010-1018.e1. PubMed ID: 24268215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Accuracy of One-Use Methods for Calculating Fractional Flow Reserve by Intravascular Optical Coherence Tomography to That Determined by the Pressure-Wire Method.
    Jang SJ; Ahn JM; Kim B; Gu JM; Sung HJ; Park SJ; Oh WY
    Am J Cardiol; 2017 Dec; 120(11):1920-1925. PubMed ID: 29050684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.
    Lee KE; Lee SH; Shin ES; Shim EB
    Biomed Eng Online; 2017 Jun; 16(1):83. PubMed ID: 28651585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic accuracy of optical coherence tomography parameters in predicting in-stent hemodynamic severe coronary lesions: validation against fractional flow reserve.
    Belkacemi A; Stella PR; Ali DS; Novianti PW; Doevendans PA; van Belle E; Agostoni P
    Int J Cardiol; 2013 Oct; 168(4):4209-13. PubMed ID: 23953267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve.
    Shiono Y; Kitabata H; Kubo T; Masuno T; Ohta S; Ozaki Y; Sougawa H; Orii M; Shimamura K; Ishibashi K; Komukai K; Yamano T; Tanimoto T; Ino Y; Yamaguchi T; Hirata K; Mizukoshi M; Imanishi T; Akasaka T
    Circ J; 2012; 76(9):2218-25. PubMed ID: 22785153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study.
    Kubo T; Akasaka T; Shite J; Suzuki T; Uemura S; Yu B; Kozuma K; Kitabata H; Shinke T; Habara M; Saito Y; Hou J; Suzuki N; Zhang S
    JACC Cardiovasc Imaging; 2013 Oct; 6(10):1095-1104. PubMed ID: 24011777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic Performance of Frequency-Domain Optical Coherence Tomography to Predict Functionally Significant Left Main Coronary Artery Stenosis.
    Bouki KP; Vlad DI; Goulas N; Lambadiari VA; Dimitriadis GD; Kotsakis AA; Barοutsi K; Toutouzas KP
    J Interv Cardiol; 2021; 2021():7108284. PubMed ID: 34867107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of frequency domain optical coherence tomography and fractional flow reserve to assess intermediate coronary artery stenoses: conciliating anatomic and physiologic information.
    Stefano GT; Bezerra HG; Attizzani G; Chamié D; Mehanna E; Yamamoto H; Costa MA
    Int J Cardiovasc Imaging; 2011 Feb; 27(2):299-308. PubMed ID: 21409535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve.
    Zafar H; Sharif F; Leahy MJ
    Int J Cardiol Heart Vasc; 2014 Dec; 5():68-71. PubMed ID: 28785616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Computational Fractional Flow Reserve From Optical Coherence Tomography in Patients With Intermediate Coronary Stenosis in the Left Anterior Descending Artery.
    Ha J; Kim JS; Lim J; Kim G; Lee S; Lee JS; Shin DH; Kim BK; Ko YG; Choi D; Jang Y; Hong MK
    Circ Cardiovasc Interv; 2016 Aug; 9(8):. PubMed ID: 27502209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance.
    Habara M; Nasu K; Terashima M; Kaneda H; Yokota D; Ko E; Ito T; Kurita T; Tanaka N; Kimura M; Ito T; Kinoshita Y; Tsuchikane E; Asakura K; Asakura Y; Katoh O; Suzuki T
    Circ Cardiovasc Interv; 2012 Apr; 5(2):193-201. PubMed ID: 22456026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the amount of myocardium subtended by a stenosis on fractional flow reserve.
    Leone AM; De Caterina AR; Basile E; Gardi A; Laezza D; Mazzari MA; Mongiardo R; Kharbanda R; Cuculi F; Porto I; Niccoli G; Burzotta F; Trani C; Banning AP; Rebuzzi AG; Crea F
    Circ Cardiovasc Interv; 2013 Feb; 6(1):29-36. PubMed ID: 23322740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association between fractional flow reserve and coronary plaque characteristics assessed by optical coherence tomography.
    Lee SY; Shin DH; Shehata I; Kim JS; Kim BK; Ko YG; Choi D; Jang Y; Hong MK
    J Cardiol; 2016 Oct; 68(4):342-5. PubMed ID: 26603326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l'Infarto-VARiability] study).
    Fedele S; Biondi-Zoccai G; Kwiatkowski P; Di Vito L; Occhipinti M; Cremonesi A; Albertucci M; Materia L; Paoletti G; Prati F
    Am J Cardiol; 2012 Oct; 110(8):1106-12. PubMed ID: 22748353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity.
    Yu W; Huang J; Jia D; Chen S; Raffel OC; Ding D; Tian F; Kan J; Zhang S; Yan F; Chen Y; Bezerra HG; Wijns W; Tu S
    EuroIntervention; 2019 Jun; 15(2):189-197. PubMed ID: 31147309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.