These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 23425574)
1. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Oggerin M; Tornos F; Rodríguez N; del Moral C; Sánchez-Román M; Amils R Environ Microbiol; 2013 Aug; 15(8):2228-37. PubMed ID: 23425574 [TBL] [Abstract][Full Text] [Related]
2. Fungal jarosite biomineralization in Río Tinto. Oggerin M; Rodríguez N; del Moral C; Amils R Res Microbiol; 2014 Nov; 165(9):719-25. PubMed ID: 25445568 [TBL] [Abstract][Full Text] [Related]
3. Application of the kinetic and isotherm models for better understanding of the mechanism of biomineralization process induced by Purpureocillium lilacinum Y3. Xia M; Bao P; Liu A; Li S; Yu R; Liu Y; Li J; Wu X; Huang C; Chen M; Qiu G; Zeng W Colloids Surf B Biointerfaces; 2019 Sep; 181():207-214. PubMed ID: 31146244 [TBL] [Abstract][Full Text] [Related]
4. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. Fuente V; Rufo L; Juárez BH; Menéndez N; García-Hernández M; Salas-Colera E; Espinosa A J Struct Biol; 2016 Jan; 193(1):23-32. PubMed ID: 26592710 [TBL] [Abstract][Full Text] [Related]
5. Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt). González-Toril E; Santofimia E; López-Pamo E; García-Moyano A; Aguilera Á; Amils R Int Microbiol; 2014 Dec; 17(4):225-33. PubMed ID: 26421738 [TBL] [Abstract][Full Text] [Related]
6. Metal uptake and distribution in cultured seedlings of Nerium oleander L. (Apocynaceae) from the Río Tinto (Huelva, Spain). Franco A; Rufo L; Zuluaga J; de la Fuente V Biol Trace Elem Res; 2013 Oct; 155(1):82-92. PubMed ID: 23892697 [TBL] [Abstract][Full Text] [Related]
7. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Abramov SM; Straub D; Tejada J; Grimm L; Schädler F; Bulaev A; Thorwarth H; Amils R; Kappler A; Kleindienst S Appl Environ Microbiol; 2022 Feb; 88(4):e0229021. PubMed ID: 34910570 [TBL] [Abstract][Full Text] [Related]
8. Microbial ecology of an extreme acidic environment, the Tinto River. González-Toril E; Llobet-Brossa E; Casamayor EO; Amann R; Amils R Appl Environ Microbiol; 2003 Aug; 69(8):4853-65. PubMed ID: 12902280 [TBL] [Abstract][Full Text] [Related]
9. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal). Durães N; Bobos I; da Silva EF Environ Sci Pollut Res Int; 2017 Feb; 24(5):4562-4576. PubMed ID: 27957691 [TBL] [Abstract][Full Text] [Related]
10. Extracellular polymeric substances (EPS) secreted by Bao P; Xia M; Liu A; Wang M; Shen L; Yu R; Liu Y; Li J; Wu X; Fang C; Chen M; Qiu G; Zeng W RSC Adv; 2018 Jun; 8(40):22635-22642. PubMed ID: 35539736 [TBL] [Abstract][Full Text] [Related]
11. Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Fernández-Remolar DC; Prieto-Ballesteros O; Rodríguez N; Gómez F; Amils R; Gómez-Elvira J; Stoker CR Astrobiology; 2008 Oct; 8(5):1023-47. PubMed ID: 19105758 [TBL] [Abstract][Full Text] [Related]
12. Composition and spectra of copper-carotenoid sediments from a pyrite mine stream in Spain. Garcia-Guinea J; Furio M; Sanchez-Moral S; Jurado V; Correcher V; Saiz-Jimenez C Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():203-10. PubMed ID: 25064504 [TBL] [Abstract][Full Text] [Related]
13. From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles. Amils R; González-Toril E; Aguilera A; Rodríguez N; Fernández-Remolar D; Gómez F; García-Moyano A; Malki M; Oggerin M; Sánchez-Andrea I; Sanz JL Adv Appl Microbiol; 2011; 77():41-70. PubMed ID: 22050821 [TBL] [Abstract][Full Text] [Related]
14. Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. Gadanho M; Sampaio JP FEMS Microbiol Ecol; 2006 Jul; 57(1):139-48. PubMed ID: 16819957 [TBL] [Abstract][Full Text] [Related]
15. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Gadanho M; Libkind D; Sampaio JP Microb Ecol; 2006 Oct; 52(3):552-63. PubMed ID: 17013554 [TBL] [Abstract][Full Text] [Related]
16. Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Amils R Res Microbiol; 2016 Sep; 167(7):539-45. PubMed ID: 27349346 [TBL] [Abstract][Full Text] [Related]
17. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609 [TBL] [Abstract][Full Text] [Related]
18. Río tinto: a geochemical and mineralogical terrestrial analogue of Mars. Amils R; Fernández-Remolar D; The Ipbsl Team Life (Basel); 2014 Sep; 4(3):511-34. PubMed ID: 25370383 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain). Rull F; Guerrero J; Venegas G; Gázquez F; Medina J Environ Sci Pollut Res Int; 2014; 21(11):6783-92. PubMed ID: 23818074 [TBL] [Abstract][Full Text] [Related]
20. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. Hou Q; Fang D; Liang J; Zhou L PLoS One; 2015; 10(3):e0120966. PubMed ID: 25807372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]