These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2342574)

  • 21. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.
    Vida I; Bartos M; Jonas P
    Neuron; 2006 Jan; 49(1):107-17. PubMed ID: 16387643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike timing of lacunosom-moleculare targeting interneurons and CA3 pyramidal cells during high-frequency network oscillations in vitro.
    Spampanato J; Mody I
    J Neurophysiol; 2007 Jul; 98(1):96-104. PubMed ID: 17475718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mechanism for generation of long-range synchronous fast oscillations in the cortex.
    Traub RD; Whittington MA; Stanford IM; Jefferys JG
    Nature; 1996 Oct; 383(6601):621-4. PubMed ID: 8857537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The locust olfactory system as a case study for modeling dynamics of neurobiological networks: from discrete time neurons to continuous time neurons.
    Quenet B; Horcholle-Bossavit G
    Arch Ital Biol; 2007 Nov; 145(3-4):263-75. PubMed ID: 18075120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How inhibitory oscillations can train neural networks and punish competitors.
    Norman KA; Newman E; Detre G; Polyn S
    Neural Comput; 2006 Jul; 18(7):1577-610. PubMed ID: 16764515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustained oscillations, entrainment and lateral inhibition in the crayfish visual system.
    Nudelman HB; Glantz RM
    Fed Proc; 1977 Jun; 36(7):2042-4. PubMed ID: 862938
    [No Abstract]   [Full Text] [Related]  

  • 27. Interneuronal projections to identified cilia-activating pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2003 May; 89(5):2420-9. PubMed ID: 12740402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Interneuron activity of the pedal ganglia of pteropod mollusks during generation of locomotor rhythms].
    ArshavskiÄ­ IuI; Beloozerova IN; OrlovskiÄ­ GN; Pavlova GA; Panchin IuV
    Neirofiziologiia; 1984; 16(2):272-5. PubMed ID: 6330586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mechanisms of generation of fast (20 80 Hz) oscillations in thalamocortical circuits].
    Contreras D
    Rev Neurol; 2002 Jul 16-31; 35(2):135-41. PubMed ID: 12221625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1327-35. PubMed ID: 14624030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of associative learning in the terrestrial mollusc Limax maximus. II. Appetitive learning.
    Sahley CL; Martin KA; Gelperin A
    J Comp Physiol A; 1990 Aug; 167(3):339-45. PubMed ID: 2231476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two types of network oscillations and their odor responses in the primary olfactory center of a terrestrial mollusk.
    Inokuma Y; Inoue T; Watanabe S; Kirino Y
    J Neurophysiol; 2002 Jun; 87(6):3160-4. PubMed ID: 12037217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odors can induce feeding motor responses in the terrestrial mollusc Limax maximus.
    Sahley CL; Martin KA; Gelperin A
    Behav Neurosci; 1992 Jun; 106(3):563-8. PubMed ID: 1616620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Initiation and propagation of calcium-dependent action potentials in a coupled network of olfactory interneurons.
    Wang JW; Denk W; Flores J; Gelperin A
    J Neurophysiol; 2001 Feb; 85(2):977-85. PubMed ID: 11160527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distributions of gamma-aminobutyric acid immunoreactive and acetylcholinesterase-containing cells in the primary olfactory system in the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1337-46. PubMed ID: 14624031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Waves and stimulus-modulated dynamics in an oscillating olfactory network.
    Delaney KR; Gelperin A; Fee MS; Flores JA; Gervais R; Tank DW; Kleinfeld D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):669-73. PubMed ID: 8290580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk.
    Gelperin A; Flores J; Raccuia-Behling F; Cooke IR
    J Neurophysiol; 2000 Jan; 83(1):116-27. PubMed ID: 10634858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning-induced oscillatory activities correlated to odour recognition: a network activity.
    Martin C; Gervais R; Messaoudi B; Ravel N
    Eur J Neurosci; 2006 Apr; 23(7):1801-10. PubMed ID: 16623837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys.
    Courtemanche R; Fujii N; Graybiel AM
    J Neurosci; 2003 Dec; 23(37):11741-52. PubMed ID: 14684876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.