BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2342580)

  • 1. Underwater hearing in the clawed frog, Xenopus laevis. Tympanic motion studied with laser vibrometry.
    Christensen-Dalsgaard J; Breithaupt T; Elepfandt A
    Naturwissenschaften; 1990 Mar; 77(3):135-7. PubMed ID: 2342580
    [No Abstract]   [Full Text] [Related]  

  • 2. Biophysics of underwater hearing in the clawed frog, Xenopus laevis.
    Christensen-Dalsgaard J; Elepfandt A
    J Comp Physiol A; 1995 Mar; 176(3):317-24. PubMed ID: 7707269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling underwater hearing and sound localization in the frog
    Vedurmudi AP; Christensen-Dalsgaard J; van Hemmen JL
    J Acoust Soc Am; 2018 Nov; 144(5):3010. PubMed ID: 30522324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans.
    Christensen-Dalsgaard J; Brandt C; Willis KL; Christensen CB; Ketten D; Edds-Walton P; Fay RR; Madsen PT; Carr CE
    Proc Biol Sci; 2012 Jul; 279(1739):2816-24. PubMed ID: 22438494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics.
    Katbamna B; Brown JA; Collard M; Ide CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):381-7. PubMed ID: 16322997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal Matched Filtering in the Inner Ear of the African Clawed Frog (Xenopus laevis).
    Cobo-Cuan A; Narins PM
    J Assoc Res Otolaryngol; 2020 Feb; 21(1):33-42. PubMed ID: 31907715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning.
    Elepfandt A; Eistetter I; Fleig A; Günther E; Hainich M; Hepperle S; Traub B
    J Exp Biol; 2000 Dec; 203(Pt 23):3621-9. PubMed ID: 11060223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS.
    Mason M; Wang M; Narins P
    Proc Inst Acoust; 2009 Jan; 31():13-21. PubMed ID: 20953303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear.
    Peacock J; Pintelon R; Dirckx J
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):569-80. PubMed ID: 26162416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic membrane properties of laryngeal motoneurons that control sexually differentiated vocal behavior in African clawed frogs, Xenopus laevis.
    Yamaguchi A; Kaczmarek LK; Kelley DB
    Biol Bull; 2000 Oct; 199(2):175-6. PubMed ID: 11081721
    [No Abstract]   [Full Text] [Related]  

  • 11. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.
    Christensen CB; Christensen-Dalsgaard J; Madsen PT
    J Exp Biol; 2015 Feb; 218(Pt 3):381-7. PubMed ID: 25653420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimally invasive laser vibrometry (MIVIB) with a floating mass transducer - A new method for objective evaluation of the middle ear demonstrated on stapes fixation.
    Wales J; Gladiné K; Van de Heyning P; Topsakal V; von Unge M; Dirckx J
    Hear Res; 2018 Jan; 357():46-53. PubMed ID: 29190487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapping, a female receptive call, initiates male-female duets in the South African clawed frog.
    Tobias ML; Viswanathan SS; Kelley DB
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1870-5. PubMed ID: 9465109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting oogenesis in the South African clawed frog (Xenopus laevis).
    Green SL
    Comp Med; 2002 Aug; 52(4):307-12. PubMed ID: 12211272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central organization of wave localization in the clawed frog, Xenopus laevis. II. Midbrain topology for wave directions.
    Elepfandt A
    Brain Behav Evol; 1988; 31(6):358-68. PubMed ID: 3046709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties.
    van Dijk P; Mason MJ; Narins PM
    Hear Res; 2002 Nov; 173(1-2):100-8. PubMed ID: 12372639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central organization of wave localization in the clawed frog, Xenopus laevis. I. Involvement and bilateral organization of the midbrain.
    Elepfandt A
    Brain Behav Evol; 1988; 31(6):349-57. PubMed ID: 3046708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The submerged electro-olfactogram of the clawed toad Xenopus laevis].
    Kruzhalov NB
    Zh Evol Biokhim Fiziol; 1995; 31(5-6):685-9. PubMed ID: 8714303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical Basis of Dynamic Modulation of Tympanic Tension in the Water Monitor Lizard, Varanus salvator.
    Han D; Young BA
    Anat Rec (Hoboken); 2016 Sep; 299(9):1270-80. PubMed ID: 27312415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Essential and substituted amino acids as chemical stimuli in the clawed frog Xenopus laevis].
    Kruzhalov NB
    Zh Evol Biokhim Fiziol; 1983; 19(5):503-6. PubMed ID: 6650035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.