These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23425853)
1. Do TE activity and counteracting genome defenses, RNAi and methylation, shape the sex lives of smut fungi? Laurie JD; Linning R; Wong P; Bakkeren G Plant Signal Behav; 2013 Apr; 8(4):e23853. PubMed ID: 23425853 [TBL] [Abstract][Full Text] [Related]
2. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Laurie JD; Ali S; Linning R; Mannhaupt G; Wong P; Güldener U; Münsterkötter M; Moore R; Kahmann R; Bakkeren G; Schirawski J Plant Cell; 2012 May; 24(5):1733-45. PubMed ID: 22623492 [TBL] [Abstract][Full Text] [Related]
4. Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis. Laurie JD; Linning R; Bakkeren G Curr Genet; 2008 Jan; 53(1):49-58. PubMed ID: 18060405 [TBL] [Abstract][Full Text] [Related]
5. A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Dutheil JY; Mannhaupt G; Schweizer G; M K Sieber C; Münsterkötter M; Güldener U; Schirawski J; Kahmann R Genome Biol Evol; 2016 Feb; 8(3):681-704. PubMed ID: 26872771 [TBL] [Abstract][Full Text] [Related]
6. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293 [TBL] [Abstract][Full Text] [Related]
7. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Bakkeren G; Kronstad JW Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7085-9. PubMed ID: 7913746 [TBL] [Abstract][Full Text] [Related]
8. The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Bakkeren G; Gibbard B; Yee A; Froeliger E; Leong S; Kronstad J Mol Plant Microbe Interact; 1992; 5(4):347-55. PubMed ID: 1515669 [TBL] [Abstract][Full Text] [Related]
9. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Depotter JRL; Ökmen B; Ebert MK; Beckers J; Kruse J; Thines M; Doehlemann G Microbiol Spectr; 2022 Oct; 10(5):e0034922. PubMed ID: 35972267 [TBL] [Abstract][Full Text] [Related]
10. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb. Liang SW; Huang YH; Chiu JY; Tseng HW; Huang JH; Shen WC Fungal Genet Biol; 2019 May; 126():61-74. PubMed ID: 30794950 [TBL] [Abstract][Full Text] [Related]
11. Molecular Interactions Between Smut Fungi and Their Host Plants. Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276 [TBL] [Abstract][Full Text] [Related]
12. Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. Gladyshev E Microbiol Spectr; 2017 Jul; 5(4):. PubMed ID: 28721856 [TBL] [Abstract][Full Text] [Related]
13. The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. Bakkeren G; Kronstad JW Genetics; 1996 Aug; 143(4):1601-13. PubMed ID: 8844149 [TBL] [Abstract][Full Text] [Related]
14. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. Ye Z; Pan Y; Zhang Y; Cui H; Jin G; McHardy AC; Fan L; Yu X DNA Res; 2017 Dec; 24(6):635-648. PubMed ID: 28992048 [TBL] [Abstract][Full Text] [Related]
15. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. Ho EC; Cahill MJ; Saville BJ BMC Genomics; 2007 Sep; 8():334. PubMed ID: 17892571 [TBL] [Abstract][Full Text] [Related]
16. Completion of the sexual cycle and demonstration of genetic recombination in Ustilago maydis in vitro. Ruiz-Herrera J; León-Ramírez C; Cabrera-Ponce JL; Martínez-Espinoza AD; Herrera-Estrella L Mol Gen Genet; 1999 Oct; 262(3):468-72. PubMed ID: 10589834 [TBL] [Abstract][Full Text] [Related]
17. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. Amselem J; Lebrun MH; Quesneville H BMC Genomics; 2015 Feb; 16(1):141. PubMed ID: 25766680 [TBL] [Abstract][Full Text] [Related]
18. Pathogenicity determinants in smut fungi revealed by genome comparison. Schirawski J; Mannhaupt G; Münch K; Brefort T; Schipper K; Doehlemann G; Di Stasio M; Rössel N; Mendoza-Mendoza A; Pester D; Müller O; Winterberg B; Meyer E; Ghareeb H; Wollenberg T; Münsterkötter M; Wong P; Walter M; Stukenbrock E; Güldener U; Kahmann R Science; 2010 Dec; 330(6010):1546-8. PubMed ID: 21148393 [TBL] [Abstract][Full Text] [Related]
19. A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Kämper J Mol Genet Genomics; 2004 Feb; 271(1):103-10. PubMed ID: 14673645 [TBL] [Abstract][Full Text] [Related]
20. Transposable elements in filamentous fungi. Daboussi MJ; Capy P Annu Rev Microbiol; 2003; 57():275-99. PubMed ID: 14527280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]