BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 23426360)

  • 1. Phosphorylation of lipin 1 and charge on the phosphatidic acid head group control its phosphatidic acid phosphatase activity and membrane association.
    Eaton JM; Mullins GR; Brindley DN; Harris TE
    J Biol Chem; 2013 Apr; 288(14):9933-9945. PubMed ID: 23426360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phosphatidic acid-binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3.
    Boroda S; Takkellapati S; Lawrence RT; Entwisle SW; Pearson JM; Granade ME; Mullins GR; Eaton JM; Villén J; Harris TE
    J Biol Chem; 2017 Dec; 292(50):20481-20493. PubMed ID: 28982975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipin 2 binds phosphatidic acid by the electrostatic hydrogen bond switch mechanism independent of phosphorylation.
    Eaton JM; Takkellapati S; Lawrence RT; McQueeney KE; Boroda S; Mullins GR; Sherwood SG; Finck BN; Villén J; Harris TE
    J Biol Chem; 2014 Jun; 289(26):18055-66. PubMed ID: 24811178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of Lipin and Measurement of Phosphatidic Acid Phosphatase Activity from Liposomes.
    Granade ME; Harris TE
    Methods Enzymol; 2018; 607():373-388. PubMed ID: 30149866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Catalytic Efficiency of Lipin 1β Increases by Physically Interacting with the Proto-oncoprotein c-Fos.
    Cardozo Gizzi AM; Prucca CG; Gaveglio VL; Renner ML; Pasquaré SJ; Caputto BL
    J Biol Chem; 2015 Dec; 290(49):29578-92. PubMed ID: 26475860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond.
    Zhang P; Reue K
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1583-1595. PubMed ID: 28411173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The middle lipin domain adopts a membrane-binding dimeric protein fold.
    Gu W; Gao S; Wang H; Fleming KD; Hoffmann RM; Yang JW; Patel NM; Choi YM; Burke JE; Reue K; Airola MV
    Nat Commun; 2021 Aug; 12(1):4718. PubMed ID: 34354069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein.
    Hennessy M; Granade ME; Hassaninasab A; Wang D; Kwiatek JM; Han GS; Harris TE; Carman GM
    J Biol Chem; 2019 Feb; 294(7):2365-2374. PubMed ID: 30617183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic potential of lipin inhibitors for the treatment of cancer.
    Slane EG; Tambrini SJ; Cummings BS
    Biochem Pharmacol; 2024 Apr; 222():116106. PubMed ID: 38442792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling.
    Csaki LS; Dwyer JR; Fong LG; Tontonoz P; Young SG; Reue K
    Prog Lipid Res; 2013 Jul; 52(3):305-16. PubMed ID: 23603613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity.
    Lutkewitte AJ; Finck BN
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 33003344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved residues in the N terminus of lipin-1 are required for binding to protein phosphatase-1c, nuclear translocation, and phosphatidate phosphatase activity.
    Kok BPC; Skene-Arnold TD; Ling J; Benesch MGK; Dewald J; Harris TE; Holmes CFB; Brindley DN
    J Biol Chem; 2014 Apr; 289(15):10876-10886. PubMed ID: 24558042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of high molecular weight complexes of lipin on a supported lipid bilayer observed by atomic force microscopy.
    Creutz CE; Eaton JM; Harris TE
    Biochemistry; 2013 Jul; 52(30):5092-102. PubMed ID: 23862673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase.
    Karanasios E; Han GS; Xu Z; Carman GM; Siniossoglou S
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17539-44. PubMed ID: 20876142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.
    Schweitzer GG; Collier SL; Chen Z; McCommis KS; Pittman SK; Yoshino J; Matkovich SJ; Hsu FF; Chrast R; Eaton JM; Harris TE; Weihl CC; Finck BN
    FASEB J; 2019 Jan; 33(1):652-667. PubMed ID: 30028636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment.
    Brohée L; Demine S; Willems J; Arnould T; Colige AC; Deroanne CF
    Oncotarget; 2015 May; 6(13):11264-80. PubMed ID: 25834103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase.
    O'Hara L; Han GS; Peak-Chew S; Grimsey N; Carman GM; Siniossoglou S
    J Biol Chem; 2006 Nov; 281(45):34537-48. PubMed ID: 16968695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis.
    Zhang P; Takeuchi K; Csaki LS; Reue K
    J Biol Chem; 2012 Jan; 287(5):3485-94. PubMed ID: 22157014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual function lipin proteins and glycerolipid metabolism.
    Harris TE; Finck BN
    Trends Endocrinol Metab; 2011 Jun; 22(6):226-33. PubMed ID: 21470873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipin proteins form homo- and hetero-oligomers.
    Liu GH; Qu J; Carmack AE; Kim HB; Chen C; Ren H; Morris AJ; Finck BN; Harris TE
    Biochem J; 2010 Nov; 432(1):65-76. PubMed ID: 20735359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.