These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23426607)

  • 1. Revitalizing the aromatic aza-Claisen rearrangement: implications for the mechanism of 'on-water' catalysis.
    Beare KD; McErlean CS
    Org Biomol Chem; 2013 Apr; 11(15):2452-9. PubMed ID: 23426607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Installation of 2-Reverse Prenyl Functionality into Indoles by a Tandem N-Alkylation-Aza-Cope Rearrangement Reaction and Its Application in Synthesis.
    Chen X; Fan H; Zhang S; Yu C; Wang W
    Chemistry; 2016 Jan; 22(2):716-23. PubMed ID: 26586470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Synthesis of (+)-okaramine J featuring an exceptionally facile N-reverse-prenyl to C-prenyl aza-Claisen rearrangement.
    Roe JM; Webster RA; Ganesan A
    Org Lett; 2003 Aug; 5(16):2825-7. PubMed ID: 12889884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic Aza-Claisen Rearrangement of Arylpropargylammonium Salts Generated in situ from Arynes and Tertiary Propargylamines.
    Han L; Li SJ; Zhang XT; Tian SK
    Chemistry; 2021 Feb; 27(9):3091-3097. PubMed ID: 33205537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The asymmetric aza-Claisen rearrangement: development of widely applicable pentaphenylferrocenyl palladacycle catalysts.
    Fischer DF; Barakat A; Xin ZQ; Weiss ME; Peters R
    Chemistry; 2009 Sep; 15(35):8722-41. PubMed ID: 19691065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 2,3-disubstituted indoles by a rhodium-catalyzed aromatic amino-Claisen rearrangement of N-propargyl anilines.
    Saito A; Kanno A; Hanzawa Y
    Angew Chem Int Ed Engl; 2007; 46(21):3931-3. PubMed ID: 17427902
    [No Abstract]   [Full Text] [Related]  

  • 7. Catalysis in the oil droplet/water interface for aromatic claisen rearrangement.
    Zheng Y; Zhang J
    J Phys Chem A; 2010 Apr; 114(12):4325-33. PubMed ID: 20218603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of functionalized pyrroles via gold(I)-catalyzed aza-Claisen-type rearrangement.
    Istrate FM; Gagosz F
    Org Lett; 2007 Aug; 9(16):3181-4. PubMed ID: 17608434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective beta-hydroxy-alpha-amino acid synthesis via an ether-directed, palladium-catalysed aza-Claisen rearrangement.
    Fanning KN; Jamieson AG; Sutherland A
    Org Biomol Chem; 2005 Oct; 3(20):3749-56. PubMed ID: 16211111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 1,3-Diaza-Claisen rearrangement that affords guanidines.
    Bowser AM; Madalengoitia JS
    Org Lett; 2004 Sep; 6(19):3409-12. PubMed ID: 15355064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Grignard Reagent as an Advanced Base for Aza-Claisen Rearrangement.
    Song BR; Ha MW; Kim D; Park C; Lee KW; Paek SM
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31888158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective alpha-fluoroamide and alpha-fluoro-gamma-lactone synthesis by an asymmetric zwitterionic aza-Claisen rearrangement.
    Tenza K; Northen JS; O'Hagan D; Slawin AM
    Beilstein J Org Chem; 2005 Oct; 1(1):13. PubMed ID: 16542024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective synthesis of vinylphosphonates through aromatic aza-Claisen rearrangement of α-aminophosphonates.
    Kaboudin B; Ghashghaee M; Fukaya H; Yanai H
    Chem Commun (Camb); 2023 Jun; 59(46):7076-7079. PubMed ID: 37218411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic Claisen Rearrangements of O-prenylated tyrosine and model prenyl aryl ethers: Computational study of the role of water on acceleration of Claisen rearrangements.
    Osuna S; Kim S; Bollot G; Houk KN
    European J Org Chem; 2013 May; 2013(14):. PubMed ID: 24376368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stereo-controlled access to functionalized macrolactams via an aza-Claisen rearrangement.
    Suh YG; Lee YS; Kim SH; Jung JK; Yun H; Jang J; Kim NJ; Jung JW
    Org Biomol Chem; 2012 Jan; 10(3):561-8. PubMed ID: 22108849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold(I)-catalyzed highly regio- and stereoselective decarboxylative amination of allylic N-tosylcarbamates via base-induced aza-Claisen rearrangement in water.
    Xing D; Yang D
    Org Lett; 2010 Mar; 12(5):1068-71. PubMed ID: 20143843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic and mechanistic studies of the aza-retro-Claisen rearrangement. A facile route to medium ring nitrogen heterocycles.
    Boeckman RK; Genung NE; Chen K; Ryder TR
    Org Lett; 2010 Apr; 12(7):1628-31. PubMed ID: 20218707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrocyclic ferrocenyl-bisimidazoline palladacycle dimers as highly active and enantioselective catalysts for the aza-claisen rearrangement of Z-configured N-para-methoxyphenyl trifluoroacetimidates.
    Jautze S; Seiler P; Peters R
    Angew Chem Int Ed Engl; 2007; 46(8):1260-4. PubMed ID: 17211898
    [No Abstract]   [Full Text] [Related]  

  • 19. Claisen rearrangement induced by low-energy collision of ESI-generated, protonated benzyloxy indoles.
    Crotti S; Stella L; Munari I; Massaccesi F; Cotarca L; Forcato M; Traldi P
    J Mass Spectrom; 2007 Dec; 42(12):1562-8. PubMed ID: 18085549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tandem aza-Claisen rearrangement and ring closing metathesis reaction for the synthesis of cyclic allylic trichloroacetamides.
    Swift MD; Sutherland A
    Org Lett; 2007 Dec; 9(25):5239-42. PubMed ID: 17990890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.