BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23426630)

  • 1. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain.
    Kozberg MG; Chen BR; DeLeo SE; Bouchard MB; Hillman EM
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4380-5. PubMed ID: 23426630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.
    Kozberg MG; Ma Y; Shaik MA; Kim SH; Hillman EM
    J Neurosci; 2016 Jun; 36(25):6704-17. PubMed ID: 27335402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical role for the vascular endothelium in functional neurovascular coupling in the brain.
    Chen BR; Kozberg MG; Bouchard MB; Shaik MA; Hillman EM
    J Am Heart Assoc; 2014 Jun; 3(3):e000787. PubMed ID: 24926076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation.
    Shih YY; Wey HY; De La Garza BH; Duong TQ
    J Cereb Blood Flow Metab; 2011 Mar; 31(3):832-41. PubMed ID: 20940730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the dynamic changes in functional cerebral oxidative metabolism from tissue mitochondria to blood oxygen.
    Vazquez AL; Fukuda M; Kim SG
    J Cereb Blood Flow Metab; 2012 Apr; 32(4):745-58. PubMed ID: 22293987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the cerebral blood flow response to brief neural activity in human visual cortex.
    Kim JH; Taylor AJ; Wang DJ; Zou X; Ress D
    J Cereb Blood Flow Metab; 2020 Sep; 40(9):1823-1837. PubMed ID: 31429358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats.
    Kida I; Yamamoto T
    Neurosci Res; 2008 Sep; 62(1):25-31. PubMed ID: 18602178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional connectivity in blood oxygenation level-dependent and cerebral blood volume-weighted resting state functional magnetic resonance imaging in the rat brain.
    Magnuson M; Majeed W; Keilholz SD
    J Magn Reson Imaging; 2010 Sep; 32(3):584-92. PubMed ID: 20815055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal.
    Báez-Yáñez MG; Siero JCW; Petridou N
    NMR Biomed; 2023 Dec; 36(12):e5026. PubMed ID: 37643645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
    Kim SG; Ogawa S
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1188-206. PubMed ID: 22395207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and nonlinearities of the BOLD response at very short stimulus durations.
    Yeşilyurt B; Uğurbil K; Uludağ K
    Magn Reson Imaging; 2008 Sep; 26(7):853-62. PubMed ID: 18479876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hemodynamic responses and functional connectivity in rat somatosensory cortex.
    Colonnese MT; Phillips MA; Constantine-Paton M; Kaila K; Jasanoff A
    Nat Neurosci; 2008 Jan; 11(1):72-9. PubMed ID: 18037883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invalidation of fMRI experiments secondary to neurovascular uncoupling in patients with cerebrovascular disease.
    Para AE; Sam K; Poublanc J; Fisher JA; Crawley AP; Mikulis DJ
    J Magn Reson Imaging; 2017 Nov; 46(5):1448-1455. PubMed ID: 28152241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-oxygen-level-dependent magnetic resonance signal and cerebral oxygenation responses to brain activation are enhanced by concurrent transient hypertension in rats.
    Qiao M; Rushforth D; Wang R; Shaw RA; Tomanek B; Dunn JF; Tuor UI
    J Cereb Blood Flow Metab; 2007 Jun; 27(6):1280-9. PubMed ID: 17191077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.
    Huppert TJ; Hoge RD; Diamond SG; Franceschini MA; Boas DA
    Neuroimage; 2006 Jan; 29(2):368-82. PubMed ID: 16303317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T.
    Huber L; Goense J; Kennerley AJ; Ivanov D; Krieger SN; Lepsien J; Trampel R; Turner R; Möller HE
    Neuroimage; 2014 Aug; 97():349-62. PubMed ID: 24742920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex.
    Pasley BN; Inglis BA; Freeman RD
    Neuroimage; 2007 Jun; 36(2):269-76. PubMed ID: 17113313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.
    Cardenas DP; Muir ER; Huang S; Boley A; Lodge D; Duong TQ
    Neuroimage; 2015 Oct; 119():382-9. PubMed ID: 26143203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Component structure of event-related fMRI responses in the different neurovascular compartments.
    Roberts KC; Tran TT; Song AW; Woldorff MG
    Magn Reson Imaging; 2007 Apr; 25(3):328-34. PubMed ID: 17371721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat.
    Lu J; Dai G; Egi Y; Huang S; Kwon SJ; Lo EH; Kim YR
    Neuroimage; 2009 May; 45(4):1126-34. PubMed ID: 19118633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.