BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23426666)

  • 1. Differential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques.
    Rhodes SE; Murray EA
    J Neurosci; 2013 Feb; 33(8):3380-9. PubMed ID: 23426666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2004 Aug; 24(34):7540-8. PubMed ID: 15329401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.
    Izquierdo A; Murray EA
    J Neurosci; 2010 Jan; 30(2):661-9. PubMed ID: 20071531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2005 Sep; 25(37):8534-42. PubMed ID: 16162935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring reward assessment in a semi-naturalistic context: the effects of selective amygdala, orbital frontal or hippocampal lesions.
    Machado CJ; Bachevalier J
    Neuroscience; 2007 Sep; 148(3):599-611. PubMed ID: 17693034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.
    Izquierdo A; Murray EA
    J Neurophysiol; 2004 May; 91(5):2023-39. PubMed ID: 14711973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats.
    Coutureau E; Killcross S
    Behav Brain Res; 2003 Nov; 146(1-2):167-74. PubMed ID: 14643469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex.
    Baxter MG; Parker A; Lindner CC; Izquierdo AD; Murray EA
    J Neurosci; 2000 Jun; 20(11):4311-9. PubMed ID: 10818166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys.
    Izquierdo A; Murray EA
    Eur J Neurosci; 2005 Nov; 22(9):2341-6. PubMed ID: 16262672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    J Neurosci; 2007 Oct; 27(42):11327-33. PubMed ID: 17942727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates.
    Machado CJ; Bachevalier J
    Eur J Neurosci; 2007 May; 25(9):2885-904. PubMed ID: 17561849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
    Hart G; Bradfield LA; Balleine BW
    J Neurosci; 2018 Jan; 38(5):1311-1322. PubMed ID: 29301872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions.
    Shipman ML; Trask S; Bouton ME; Green JT
    Neurobiol Learn Mem; 2018 Nov; 155():164-172. PubMed ID: 30053577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between orbital prefrontal cortex and amygdala: advanced cognition, learned responses and instinctive behaviors.
    Murray EA; Wise SP
    Curr Opin Neurobiol; 2010 Apr; 20(2):212-20. PubMed ID: 20181474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
    Málková L; Gaffan D; Murray EA
    J Neurosci; 1997 Aug; 17(15):6011-20. PubMed ID: 9221797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Prefrontal-Amygdala Circuit Interactions Underlie Social and Nonsocial Valuation in Rhesus Macaques.
    Pujara MS; Ciesinski NK; Reyelts JF; Rhodes SEV; Murray EA
    J Neurosci; 2022 Jul; 42(28):5593-5604. PubMed ID: 35654604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.
    Rudebeck PH; Ripple JA; Mitz AR; Averbeck BB; Murray EA
    J Neurosci; 2017 Feb; 37(8):2186-2202. PubMed ID: 28123082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task.
    Chudasama Y; Kralik JD; Murray EA
    Cereb Cortex; 2007 May; 17(5):1154-9. PubMed ID: 16774961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior.
    Rudebeck PH; Murray EA
    J Neurosci; 2011 Jul; 31(29):10569-78. PubMed ID: 21775601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.