These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23426666)

  • 21. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    Eur J Neurosci; 2009 May; 29(10):2049-59. PubMed ID: 19453635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex.
    Rudebeck PH; Mitz AR; Chacko RV; Murray EA
    Neuron; 2013 Dec; 80(6):1519-31. PubMed ID: 24360550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pre-training inactivation of basolateral amygdala and mediodorsal thalamus, but not orbitofrontal cortex or prelimbic cortex, impairs devaluation in a multiple-response/multiple-reinforcer cued operant task.
    Fisher H; Pajser A; Pickens CL
    Behav Brain Res; 2020 Jan; 378():112159. PubMed ID: 31605743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta).
    Thornton JA; Malkova L; Murray EA
    Behav Neurosci; 1998 Aug; 112(4):1020-5. PubMed ID: 9733208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task.
    Wallis JD; Miller EK
    Eur J Neurosci; 2003 Oct; 18(7):2069-81. PubMed ID: 14622240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.
    West EA; DesJardin JT; Gale K; Malkova L
    J Neurosci; 2011 Oct; 31(42):15128-35. PubMed ID: 22016546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consolidation of Goal-Directed Action Depends on MAPK/ERK Signaling in Rodent Prelimbic Cortex.
    Hart G; Balleine BW
    J Neurosci; 2016 Nov; 36(47):11974-11986. PubMed ID: 27881782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys.
    Mitchell AS; Browning PG; Baxter MG
    J Neurosci; 2007 Oct; 27(42):11289-95. PubMed ID: 17942723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
    Izquierdo A; Murray EA
    J Neurosci; 2007 Jan; 27(5):1054-62. PubMed ID: 17267559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Correlates of Strategy Switching in the Macaque Orbital Prefrontal Cortex.
    Fascianelli V; Ferrucci L; Tsujimoto S; Genovesio A
    J Neurosci; 2020 Apr; 40(15):3025-3034. PubMed ID: 32098903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective ablations reveal that orbital and lateral prefrontal cortex play different roles in estimating predicted reward value.
    Simmons JM; Minamimoto T; Murray EA; Richmond BJ
    J Neurosci; 2010 Nov; 30(47):15878-87. PubMed ID: 21106826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing and Integration of Contextual Information in Monkey Ventrolateral Prefrontal Neurons during Selection and Execution of Goal-Directed Manipulative Actions.
    Bruni S; Giorgetti V; Bonini L; Fogassi L
    J Neurosci; 2015 Aug; 35(34):11877-90. PubMed ID: 26311770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior.
    Tang H; Costa VD; Bartolo R; Averbeck BB
    Cell Rep; 2022 Jan; 38(1):110198. PubMed ID: 34986350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Goal-directed responding is sensitive to lesions to the prelimbic cortex or basolateral nucleus of the amygdala but not to their disconnection.
    Coutureau E; Marchand AR; Di Scala G
    Behav Neurosci; 2009 Apr; 123(2):443-8. PubMed ID: 19331467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monkeys can associate visual stimuli with reward delayed by 1 s even after perirhinal cortex ablation, uncinate fascicle section or amygdalectomy.
    Gutnikov SA; Ma YY; Buckley MJ; Gaffan D
    Behav Brain Res; 1997 Aug; 87(1):85-96. PubMed ID: 9331476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preserved stimulus-reward and reversal learning after selective neonatal orbital frontal areas 11/13 or amygdala lesions in monkeys.
    Kazama AM; Bachevalier J
    Dev Cogn Neurosci; 2012 Jul; 2(3):363-80. PubMed ID: 22494813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct contributions of the amygdala and hippocampus to fear expression.
    Chudasama Y; Izquierdo A; Murray EA
    Eur J Neurosci; 2009 Dec; 30(12):2327-37. PubMed ID: 20092575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex.
    Goulet S; Murray EA
    Behav Neurosci; 2001 Apr; 115(2):271-84. PubMed ID: 11345954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of prelimbic cortex in instrumental conditioning.
    Corbit LH; Balleine BW
    Behav Brain Res; 2003 Nov; 146(1-2):145-57. PubMed ID: 14643467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.