BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23426846)

  • 1. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid.
    Zhang S; Metin Ö; Su D; Sun S
    Angew Chem Int Ed Engl; 2013 Mar; 52(13):3681-4. PubMed ID: 23426846
    [No Abstract]   [Full Text] [Related]  

  • 2. AgPd Nanoparticles Deposited on WO
    Yu C; Guo X; Xi Z; Muzzio M; Yin Z; Shen B; Li J; Seto CT; Sun S
    J Am Chem Soc; 2017 Apr; 139(16):5712-5715. PubMed ID: 28402632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid.
    Yurderi M; Bulut A; Caner N; Celebi M; Kaya M; Zahmakiran M
    Chem Commun (Camb); 2015 Jul; 51(57):11417-20. PubMed ID: 26087033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane.
    Metin O; Mazumder V; Ozkar S; Sun S
    J Am Chem Soc; 2010 Feb; 132(5):1468-9. PubMed ID: 20078051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface quantum trap depression and charge polarization in the CuPd and AgPd bimetallic alloy catalysts.
    Sun CQ; Wang Y; Nie YG; Mehta BR; Khanuja M; Shivaprasad SM; Sun Y; Pan JS; Pan LK; Sun Z
    Phys Chem Chem Phys; 2010 Apr; 12(13):3131-5. PubMed ID: 20237700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.
    Chen W; Kim J; Sun S; Chen S
    Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.
    Lee D; Jang HY; Hong S; Park S
    J Colloid Interface Sci; 2012 Dec; 388(1):74-9. PubMed ID: 22964092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane.
    Yan JM; Zhang XB; Akita T; Haruta M; Xu Q
    J Am Chem Soc; 2010 Apr; 132(15):5326-7. PubMed ID: 20345145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and self-assembly of monodisperse Co(x)Ni(100-x) (x=50,80) colloidal nanoparticles by homogenous nucleation.
    Sharma S; Gajbhiye NS; Ningthoujam RS
    J Colloid Interface Sci; 2010 Nov; 351(2):323-9. PubMed ID: 20728900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.
    Zhu C; Guo S; Dong S
    Chemistry; 2013 Jan; 19(3):1104-11. PubMed ID: 23180616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach.
    Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC
    Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A one-pot protocol for synthesis of non-noble metal-based core-shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3.
    Jiang HL; Akita T; Xu Q
    Chem Commun (Camb); 2011 Oct; 47(39):10999-1001. PubMed ID: 21909589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitation of silver/palladium alloy platelets from homogeneous solutions.
    Farrell BP; Lu L; Goia DV
    J Colloid Interface Sci; 2012 Jun; 376(1):62-6. PubMed ID: 22456276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.
    Mazumder V; Sun S
    J Am Chem Soc; 2009 Apr; 131(13):4588-9. PubMed ID: 19281236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.
    Wang S; Wang X; Jiang SP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6883-91. PubMed ID: 21409276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.