BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23426869)

  • 1. Dissecting the roles of the N- and C-flanking residues of acetyllysine substrates for SIRT1 activity.
    Meledin R; Brik A; Aharoni A
    Chembiochem; 2013 Mar; 14(5):577-81. PubMed ID: 23426869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationship modeling reveals the minimal sequence requirement and amino acid preference of sirtuin-1's deacetylation substrates in diabetes mellitus.
    Shao X; Kong W; Li Y; Zhang S
    J Bioinform Comput Biol; 2022 Jun; 20(3):2250008. PubMed ID: 35451939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new nonpeptide substrate of human sirtuin in a capillary electrophoresis-based assay. Investigation of the binding mode by docking experiments.
    Abromeit H; Kannan S; Sippl W; Scriba GK
    Electrophoresis; 2012 Jun; 33(11):1652-9. PubMed ID: 22736369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of SIRT1-catalyzed lysine Nepsilon-deacetylation reaction probed with the side chain modified Nepsilon-acetyl-lysine analogs.
    Jamonnak N; Hirsch BM; Pang Y; Zheng W
    Bioorg Chem; 2010 Feb; 38(1):17-25. PubMed ID: 19914676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation.
    Hou X; Rooklin D; Fang H; Zhang Y
    Sci Rep; 2016 Nov; 6():38186. PubMed ID: 27901083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N(epsilon)-thioacetyl-lysine-containing tri-, tetra-, and pentapeptides as SIRT1 and SIRT2 inhibitors.
    Kiviranta PH; Suuronen T; Wallén EA; Leppänen J; Tervonen J; Kyrylenko S; Salminen A; Poso A; Jarho EM
    J Med Chem; 2009 Apr; 52(7):2153-6. PubMed ID: 19296597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine acetylation and the bromodomain: a new partnership for signaling.
    Yang XJ
    Bioessays; 2004 Oct; 26(10):1076-87. PubMed ID: 15382140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis of sirtuin substrate affinity.
    Cosgrove MS; Bever K; Avalos JL; Muhammad S; Zhang X; Wolberger C
    Biochemistry; 2006 Jun; 45(24):7511-21. PubMed ID: 16768447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2.
    Huhtiniemi T; Suuronen T; Lahtela-Kakkonen M; Bruijn T; Jääskeläinen S; Poso A; Salminen A; Leppänen J; Jarho E
    Bioorg Med Chem; 2010 Aug; 18(15):5616-25. PubMed ID: 20630764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins.
    Xu S; Zhong C; Zhang T; Ding J
    J Mol Cell Biol; 2011 Oct; 3(5):293-300. PubMed ID: 21724641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms.
    Rauh D; Fischer F; Gertz M; Lakshminarasimhan M; Bergbrede T; Aladini F; Kambach C; Becker CF; Zerweck J; Schutkowski M; Steegborn C
    Nat Commun; 2013; 4():2327. PubMed ID: 23995836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 deacetylation by SIRT1 decreases during protein kinase CKII downregulation-mediated cellular senescence.
    Jang SY; Kim SY; Bae YS
    FEBS Lett; 2011 Nov; 585(21):3360-6. PubMed ID: 21968188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide.
    Feng Y; Wu J; Chen L; Luo C; Shen X; Chen K; Jiang H; Liu D
    Anal Biochem; 2009 Dec; 395(2):205-10. PubMed ID: 19682970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the cellular deacetylase activity of SIRT1 on p53 via LanthaScreen® technology.
    Robers MB; Loh C; Carlson CB; Yang H; Frey EA; Hermanson SB; Bi K
    Mol Biosyst; 2011 Jan; 7(1):59-66. PubMed ID: 20931131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRT1 shows no substrate specificity in vitro.
    Blander G; Olejnik J; Krzymanska-Olejnik E; McDonagh T; Haigis M; Yaffe MB; Guarente L
    J Biol Chem; 2005 Mar; 280(11):9780-5. PubMed ID: 15640142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.
    Toro TB; Watt TJ
    Protein Sci; 2015 Dec; 24(12):2020-32. PubMed ID: 26402585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.
    Chen L; Feng Y; Zhou Y; Zhu W; Shen X; Chen K; Jiang H; Liu D
    J Inorg Biochem; 2010 Feb; 104(2):180-5. PubMed ID: 19923004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice.
    Seifert EL; Caron AZ; Morin K; Coulombe J; He XH; Jardine K; Dewar-Darch D; Boekelheide K; Harper ME; McBurney MW
    FASEB J; 2012 Feb; 26(2):555-66. PubMed ID: 22006156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoresis-based sirtuin assay using non-peptide substrates.
    Fan Y; Hense M; Ludewig R; Weisgerber C; Scriba GK
    J Pharm Biomed Anal; 2011 Mar; 54(4):772-8. PubMed ID: 21074959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli.
    Zhao K; Chai X; Marmorstein R
    J Mol Biol; 2004 Mar; 337(3):731-41. PubMed ID: 15019790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.